TM(NORAD)-637/027/02
13 Jan 87

Table 1-9. Interrupts

Interrupt

PSW Control Bit

External

Machine Malfunction

Channel Termination
Protect Mode

Illegal Instruction

Supervisor Call

Automatic I/0 Service
Floating-Point Arithmetic Fault

Fixed Point Divide Fault

Channel Termination Queue Overflow

A W

7

Cannot be disabled
Cannot be disabled
Cannot be disabled

Table 1-10. Interrupt Response Times (Microseconds)
Interrupt
Occurrence Machine " Fixed Point Floating Poin
- External Malf. Div. Fault Divide Fault
Machine Activity Interrupt | Interrupt | Interrupt Interrupt
* Any instruction except
Load Multiple, Store :
Multiple, Read Block,
Write Block
¢ Channel termina- i
tion disabled 15.0 15.8 *%12.2 k%441
e Channel termina-
tion enabled 16.8 17.6 *¥*%14.0 **%45.9
* Load Multiple, Store
Multiple 21.2 22.0 i —
* Read Block, Write
Block * k% * k%

* No interleaved data channel activity.

** Includes execution of the instruction

itself.

*** Maximum response time is 170,400 Psec at maximum data rate.

1-40

[

No automatic I/0 service activity.

TM(NORAD)-637/027/02
13 Jan 87

Table 1-11. Automatic I/0 Service Times (Microseconds)

| I I I

I
IOutput |

| I I I [

| I | | | |Bad | Immediate]|
[| NOP |NULL | DMT ICommandI Read I Write :StatusIInterrupt=
| | | I |

| I I [I I [[I I
| Base | 6.8 | 8.8 | 8.4 | 10.4 |12.2+1.8n|12.441.6n] 19.8 | 6.2 |
I | I I | | I I | |
I I [[I I | I [|
| Initiate | ==] 1.6 | 1.6 | -—— | 50 | 5.0 | == | -— |
I | | I I I I I I I
I : I I I [[I | [I
| Term Char | I I I | I I I I
| (no match)| —== | === | == | ——= | 1.6 | 1.6 | —=— | -—— I
I | I I | I I I I I
| I [| I I | I I I
| Term Char | | I | I | I I |
| (mateh) | —== | === | == | == | 4.2 | 4.2 | - | -— |
| I | I | I I | I I
I [I [I [I [I I
| Queue | | | I I I | I I
[(top) | ==l 22 | %2] === | <72 | 7.8 |==5 [me= |
I I I I I I | I | I
I [I I [I [[I |
| Queue | | | | | | I | |
| (bottom) | == | 7.0 7.0 | ——- | 7.0 | 7.0 | -= | - |
I | I I I I I I I I
| [[I I [I I [I
| Chain | —— 11414 —— | 146 | 1.4 |- | -— |
I | I | I | | I | I
I I [I [I I I I I
| Continue | --- [-5.0+|-5.0+] --- | -5.0+# | 5.0+ | =—— | - |
I I I | I | I | I |
I I [I [I I [I |
| Queue I I | I I I I I |
| Service | | I | | |] | |
I Interrupt I 2.6 I 2.6 { 2.6 } 2.6 I 2.6 I 2.6 : 2.6 I -— I

NOTES: 1. On read and write, n = number of bytes per interrupt.

2. On continue, subtract 5.0 psec and add the service time of the
continute action.

3. The Initiate row represents the useless case where Initiate=1,
and Output Command = 0 (zero).

4. The --- means does not apply.

1-41

U

13 Jan 87 j X7140

Table 1-12. New and 0ld PSW Locations

Hexadecimal WORAM Locations

Interrupt 0ld PSW Location New PSW Location
External 40-43 44-47
Machine Malfunction 38-3B 3C-3F
Fixed Point Divide Fault 48-4B 4C~4F

Automatic I/0 Service Defined by Inter-

rupt Pointer Table

Defined by Inter-
rupt Pointer Table

Floating-Point Arithmetic 28-2B 2C-2F _
Fault

Channel Termination 82-85 86-89
Protect Mode 30-33 34-37
Illegal Instruction 30-33 34-37
Channel Termination 8C-8F 90-93
Queue Overflow

Supervisor Call 96-99 9A-BB

—— — — e, — e, — e, — . S— e, — — — —— —— —— — — —— — . st et

1-42

TM(NORAD)-637/027/02 '
13 Jan 87 ;k

During automatic I/0 operations, interrupt response times are increased by
the total automatic I/0 service time (including continue) minus 0.8
microseconds. Automatic I/0 service times are shown in Table 1-11.

During interleaved data channel operations, interrupt response times are
increased by 0.4 + 3.8N microseconds, where N is the number of words
transferred.

In addition, all interrupt response times are subject to degradation by
memory refresh and DMA activity.

2. Control of Interrupts. Each type of interrupt is
enabled or disabled by their associated Enable/Disable PSW bit as shown in
Table 1-9. Interrupts without a controlling PSW bit are always enabled.
Disabled interrupts are not queued. An Enable/Disable PSW bit is in the
enable state when set to one. The disable state corresponds to
Enable/Disable PSW bit being reset to zero. Immediately after setting an
Enable/Disable bit in the Program Status Register, a pending interrupt of
the corresponding type causes the interrupt procedure to occur. The
Enable/Disable bits of the Program Status Register may be set or reset by
any of the following methods.

a. Execution of a Load Program Status Word
instruction, or Exchange Program Status instruction.

b. Exchange of the current PSW in Program Status
Register with a new PSW stored in a fixed location in memory. This may
occur as the result of executing a Simulate Interrupt instruction or
Supervisor Call instruction, receiving an external interrupt, or generation
of an internal interrupt.

3. Source and Occurrence of Interrupts. An External
interrupt condition is created by a controller on the I/0 Mux Bus setting
the Attention signal. This condition may occur any time at random except
when all controllers have been commanded to disable. If Bit 1 of the
Program Status Register is set, the Processor responds to an external
interrupt upon completion of the current instruction being executed. If,
however, the instruction being executed has an execution time in excess of
16 microseconds (except possibly WB or RB), the execution of the
instruction is aborted in such a way that the instruction is reinitiated
when processing of the interrupted routine is resumed.

- The machine malfunction interrupt occurs following execution of the current
instruction. The Fixed Point Divide Fault interrupt occurs during
execution of the current instruction. The Automatic I/0 service interrupt
occurs following execution of the current instruction. The Floating-Point
Arithmetic Fault interrupt occurs during execution of the current
instruction. The Channel Termination interrupt occurs either following the
execution of the current instruction or during a Load Program Status Word
or Exchange Program Status instruction. The Illegal Instruction and
Protect Mode interrupt occurs prior to instruction execution. The Channel
Termination Queue Overflow interrupt occurs following execution of the
current instruction. The Supervisor Call Interrupt occurs as part of the
execution of the Supervisor Call instruction.

1-43

TM(NORAD)-b3//UZ/ [UL N .
13 Jan 87

4. PSW Exchange. The interrupt procedure is based on
the concepts of 0ld, Current, and New Program Status Words. The Current
PSW is contained in the Program Status Register which defines the operating
status of the machine. When this status must be interrupted, the current
PSW becomes an 0ld PSW by storing the contents of the Program Status
Register in a memory location dedicated to the type of interrupt that has
occurred. The New PSW becomes the Current PSW by being loaded from a
dedicated location in the Program Status Reglister. The status portion of
the Current PSW contains the operating status for the interrupt service
routine. The Program Status Word exchange procedure does not change the
contents of the New PSW location.

5. New and Old PSW Locations. Each interrupt type has
at least one New PSW location and one Old PSW location associated with it,
with the exception that Protect Mode and Illegal Instruction interrupts
share the same pair of locations. The New/Old PSW locations associated
with each interrupt type are shown in Table 1-12.

(b) Internal Interrupts. The Processor 1is capable of
generating the following six internal interrupts:

l. Fixed-Point Divide Fault Interrupt. The Fixed-Point
Divide Fault Interrupt, enabled by Bit 3 of the Program Status Word, is
indicative of division by zero or quotient overflow. Quotient overflow is
defined as quotient magnitude greater than 215-1, for a halfword quotient.
The interrupt takes place before modification of the operand registers.
After a Fixed-Point Divide Fault Interrupt, the 0ld PSW Location Counter
points to the next instructdon following the Divide instruction.

2. Floating-Polnt Arithmetic Fault Interrupt. The
Floating Point Arithmetic Fault Interrupt enabled by Bit 5 of the Current
PSW, occurs on exponent overflow or underflow as well as on division by
zero. In the case of division by zero, the interrupt takes place prior to
alteration of the operand register. An exponent overflow sets the results
to #X'7FFF FFFF'. An exponent underflow sets the results of X'0000 0000'.
The Location Counter of the Old PSW points to the next instruction.

3. Machine Malfuntion Interrupt. Bit 2 of the Current
Program Status Word controls the Machine Malfunction Interrupt. This error
occurs on a primary power fail, a memory parity error, and during the
restart process following a power down.

a. Parity Error. If a Parity Error condition occurs
as specified in Paragraph 1-4b(7)(b), and if Bit 2 of the current PSW is
set, the Current Program Status Word is stored as the Machine Malfunction
01ld PSW location, and the Zurrent PSW is loaded from the Machine
Malfunction New PSW location. The Condition code field of the Current PSW
is then adjusted by setting the G flag (PSW 14) if the parity error Z
occurred on instruction read, or setting the V flag (PSW 13) if the error
occurred on an operand read. The following should be noted: it is not
possible to guarantee programmed recovery from a parity error; and the
Condition Code field of the Machine Malfunction New PSW location in memory
must be zero.

1-44

TM(NURAD)=b3/ /UZ/ UL &
13 Jan 87 '(\\\Qg
I 4

‘v:.:_':'v"fv "~

b. Advanced Power Failure. If Bit 2 of the PSW is
set, the setting of the Advance Power Failure signal by the Power Fault
Detect function causes a Machine Malfunction interrupt to occur. After the
PSW exchange, the L flag (PSW 15) of the current PSW is set. The Processor
remains operational for 1.6 milliseconds and then initiates a hardware
power down sequence as specified in Paragraph 1-4b(9)(£).

c. Power Restore. The resetting of the Advance
Power Failure signal when Processor power is restored causes the general
registers to be reloaded and the Program Status Register to be restored as
gspecified in Paragraph 2-3£(5)(b). If Bit 2 of PSW loaded in the Program
Status Register is set, the Processor exchanges the PSW from the Machine
Malfuntion location.

4. Illegal Instruction Interrupt. The Illegal
Instruction interrupt occurs when the Processor attempts to execute an
instruction which is not within its valid instruction repertoire.
Execution of the invalid instruction is immediately terminated and the
Program Counter is not altered. The old PSW stored as a result of an
Illegal Instruction interrupt points to the address of the Illegal
Instruction. =
5. Protect Mode Violation Interrupt. The Protect Mode
Violation interrupt is enabled when Bit 7 of the Current PSW is set, which
puts the Processor in the Protect Mode. The interrupt occurs, in this
mode, when an attempt is made to execute a Privileged instruction.
Privileged instructions dre all I1/0 instructions and System Control
instructions: Load Program Status Word, Exchange Program Status, and
Simulate Interrupt. When such an instruction is attempted in this mode,
the instruction is not executed, and the Illegal Instruction Interrupt
procedure takes place, as described above. The Location Counter does not
increment, so that the Old PSW points to the Privileged instruction that
caused the interrupt.

6. Supervisor Call (SVC) Interrupt. This interrupt
always occurs as the result of executing an SVC instruction, which is used
to communicate between running programs and operating systems. When an SVC
instruction is executed, the following action shall take place:

a. The current PSW is stored at the Supervisor Call
01d PSW location, Location X'0098°'.

b. The effective address from the SVC instruction is
stored at the Supervisor Call argument pointer, Location X'0094'.

c. The status portion of the Current PSW is loaded
from the Supervisor Call New PSW Status location, Location X'009A'.

d. The Current Location Counter is loaded from one
of the Supervisor Call New PSW Location Counter locations.

1-45

TM(NORAD)-637/027/02 | Kz‘gﬁ]
13 Jan 87 \ x

(c) Input/Output Control Interrupts. The Processor has two
classes of interrupts directly related to peripheral device handling.
These are the External Interrupt and the Immediate Interrupt. Two other
classes, the Channel Termination Interrupt and the Channel Queue Overflow
Interrupt can occur upon termination of an Automatic I/0 channel sequence.
PSW Bits 1 and 4, in combination, shall control the External and Immediate
Interrupts. If individually enabled by the program, a periphal device is
allowed to request Processor service when the device itself is ready to
transfer data via an interrupt. The Processor responds to this signal in
the following ways depending on the setting of bits 1 and 4 in the Program
Status Word.

1. I/0 Interrupt Lock-Out. If Bit 1 of the Program
Status Register is reset, 1/0 Device Interrupt signals are ignored, and the
requests are not queued. It is up to the interrupting device to keep its
request up until PSW Bit 1 is set and the signal is acknowledged.

2. External Interrupt. When Bit 1 of the Program Status
Register is set, and Bit 4 is reset, the Input/Output Multiplexer Bus
"Attention” signal causes the Processor to store the current contents of
the Program Status Register at the External interrupt 0ld PSW location into
the Program Status Register. The resulting software service routine uses
the Acknowledge Interrupt instruction to identify the interrupting
input/output device and then take appropriate action.

3. Immediate Interrupt. When both Bit 1 and Bit &4 of
the Program Status Register are set, the Input/Output Multiplexer Bus
"Attention" signal causes the Processor to automatically perform an
Acknowledge Interrupt operation causing the interrupting input/output
device to transmit its device address byte to the Processor. The Processor
uses the device address byte to index into an Interrupt Pointer Table in
memory locations DO to 2CF (hexadecimal). The Service Pointer word thus
obtained is the address of the Old PSW location for the interrupting
device, or a Channel Command Word for a channel 1/0 operation. If Bit 14
of the Service Pointer is reset, the Processor stores the current contents
of the Program Status Register into the 0ld PSW location. The contents of
the New PSW location, addressed by the Service Pointer word plus four, are
then loaded into Bits 0-15 of the Program Status Register. Finally, the
Service Pointer word plus six is loaded into Bits 16-31 of the Program
Status Register (Program Counter portion). In this way, the Processor
automatically enters the specific software service routine associated with
the interrupting device. If Bit 15 of the Service Pointer is set, the
address contained is that of a Channel Command Word implying that Automatic
1/0 Channel service is required.

1-46

TM(NORAD)-637/027/02 'L

¥Iv0

sn
¥

13 Jan 87 “leeee .

4. Automatic I/0 Channel Termination Interrupt. The
termination of an Automatic I/0 Channel operation may result in the storing
of a termination pointer in the circular list located at the address
specified by the Queue Pointer location. If, at this time, Bit 6 of the
Current PSW is set, the Current PSW is stored at the Channel Termination
0ld PSW location, and the Program Status Register loaded from the Channel
Termination New PSW location. 1In this way, the control software is
notified of the completion of a channel I/0 operation. Whenever the
Processor executes a Load Program Status Word instruction or an Exchange
Program Status instruction, Bit 6 of the newly loaded PSW is examined. If
Bit 6 of the loaded PSW is set, and there is an entry in the queue, this
interrupt occurs.

5. Channel Termination Queue Overflow Interrupt. If the
Processor attempts to enter a Channel I/0 Termination Pointer in the
Termination Queue and the queue is already full, it stores the termination
pointer at Location X'008A', the Overflow Termination Pointer location;
stores the Current PSW in Location X'008C', the Queue Overflow Old PSW
location; and loads the Program Status Register from Location X'0090', the
Queue Overflow New PSW location. This action allows the software to clear
out the queue before any channel I/0 terminations are lost. ~ This interrupt
is always enabled.

(d) 1/0 Device Interrupt Priorities. The I/0 device
priorities are established in the following manner. Following an
interrupt, the processor acknowledges the interrupt by issuing the signal
TACK. This signal is sent to the highest priority device controller. If
this device requested the interrupt, this signal serves to acknowledge
receipt of the interrupt and is not passed to the other controllers. If,
however, the interrupt did not originate with the device, the acknowledge
is passed on to the next highest priority I/0 device, which shall treat it
in like manner. The acknowledge is passed down the line until it gets to
the device that initially requested the interrupt. The device then
identifies itself by placing its address on the I/0O Mux Bus.

(9) Operational Modes and Control. A diagram and explanation of
the 1116 front panel is shown in Figure 1-10. The control of the item and
resolution of contention for resources are in accordance with the following
subordinate paragraphs. The item is in one of the following modes at all
times:

Power—of £

Start-up

Program load from I/0 mux bus
Supervisor mode (operational)
Wailt state

Protect mode (operational)
Power-down

Stand-by

Restart

H 0 MO QAN o'e

The transition from one mode to another is as shown in Figure 1-8.

1-47

LUZ\WNWUDNAL)~UI/ VLI [UL INTTTY)
13 Jan 87 .k Y

D i

(a) Power-Off. A power-off condition only occurs when one or
more of the voltage levels of the memory keep-alive power is below the
specified limits. In the power-off condition the contents of memory are no
longer refreshed and the execution of instructions is halted. Note the
contents of read/write memory modules will not be retained in the power—of £
condition. The processor is held in a power-off condition by the Power
Fault Detect function from the instant power is applied until the voltage
levels reach tolerance. When all voltages have reached tolerance, the
Processor transitions into the Start-up mode; the Memory Interface Function
commences refreshing the dynamic Memory Modules; and the Memory Operational
Indicator signal is reset.

(b) Start-Up and Program Load. When all power supply
voltages are in tolerance and the Memory Operational Indicator signal 1is
reset, the Processor performs the Start-up sequence pictured in Figure
1-9. 1If the Processor receives a program load signal, the Processor
performs program load from the I/0 Mux Bus. After completing the loading
sequence the Processor shall begin program execution.

(c) Supervisor Mode. If Bit 7 of the current PSW is reset,
the Processor is in the Supervisor Mode. The execution of any legal
instruction is enabled in the Supervisor Mode including privileged
instructions. -

(d) Protect Mode. If Bit 7 of the current PSW 1is set, the
Processor is in the Protect Mode. In this mode the execution of
Priviledged instructions are disabled. The Privileged instructions include
all 1/0 instructions, and most of the System Control instructions.
Attempts to execute a Privileged instruction in the Protect Mode causes a
Protect Mode Violation interrupt as specified in Paragraph 1-4b(8)(b)5.

(e) Wait State. Replacing the current PSW with one in which
Bit 0 is set puts the Processor in the wait state. When the Processor is
in the wait state, program execution is halted. However, the Processor
still responds to machine malfunction, external, and immediate interrupts,
if they are enabled. Automatic I/0 channel operations are also capable of
temporarily forcing the Processor out of the wait state. With all
interrupts disabled, only operator intervention from the Processor
Maintenance Panel or a Power-Off condition can force the Processor out of
the wait state.

(£) Power Down. Whenever any of the power supply voltages
becomes out of tolerance, the Processor begins a power down sequence.
1.6 milliseconds are allocated for continued software execution, and then
the Processor begins a systematic power down sequence in which the contents
of the 16 general purpose registers, PSW, and Location Counter shall be
stored in memory. The Processor then waits for the power to go down.

(g) Stand-By. Shutting the main processor power supply down
while leaving the memory supplies operational places the Processor in the
Stand-By mode. 1In this mode, normal processing is suspended but memory
refresh is operational and the contents of memory are preserved.

1-48

13 Jan 87

IM{NUKAD)=0J7 JUL/ JVUL L

(h) Restart. During the power up sequence the Processor
determines whether or not the memory has remained operational (previous
memory contents not lost). If the memory 1s still valid and the restored
PSW has bit 2 set, the current contents of the Program Status Register are
placed in the Machine Malfunction Old PSW location X'0038'-003B', the
contents of the Machine Malfunction New PSW location X'003C-003F' are
placed in the Program Status Register, and processing resumes at the
location indicated by the new contents of the Program Status Register. If
PSW Bit 2 is not set, and the Processor is in the Run mode, the Processor
resumes program execution where it was interrupted by the power down
sequence.

(10) Clock Oscillator. The clock oscillator is a crystal
controlled oscillator with an operating frequency of 40.000 MHz, an
accuracy of 0.01%, and the capability of being within accuracy limits
within 0.1 sec of power application.

(a) REAL-TIME Clock. The Real-Time clock increments every
millisecond. It resets every 200 days.

(b) ELAPSED TIME Clock. The Elapsed Time clock decrements

every millisecond. When it reaches -1 millisecond an ETC intertupt is
generated.

1-49

TM(NORAD)-637/027/02
13 Jan 87

(1) Instruction Lengths. The Processor handles both halfword and
fullword instruction formats. A 16-bit halfword format is used for
Register-to—Register and Short Format instructions. The Short Format
instructions are used to manipulate small quantities or execute short
branches relative to the present Location Counter. A 32-bit fullword
format is used for the Register and Indexed Memory and the Register
Immediate formats. The specific formats are organized as shown in
Figure 2-34.

| 0 718 11 | 12 15 |
I | | I
[RR] | oP | RL* | R2
I | l I
REGISTER TO REGISTER
| 0 7138 | 32 15 |
I | | | N
(sF] | oP I RL* I N I
| I I |
SHORT FORMAT
N
| 0 718 11 | 12 15 | 16 31
I | [I
(Rx] | oP | RL* | X2 I A2
| I I I
REGISTER AND INDEXED MEMORY
| 0 718 1| 12 15 | 16 31
I | | |
(R1] | opP | R1 | X2 | 12
| | | |

REGISTER IMMEDIATE

*REPLACED BY M1 FOR BRANCH INSTRUCTIONS

Figure 2-34. 1Instruction Word Formats

2-52

uuuuu

TH(NORAD)-637/027/02 |
13 Jan 87 e

(2) Instruction Fields. The instruction fields of the four
instruction formats shown in Figure 2-34 are defined and function as
follows:

(a) OP Field. The 8-bit OP field in all formats specifies
the machine operation to be performed. Operation codes are represented as
two hexadecimal characters.

(b) Rl Field. The 4-bit Rl field in the instruction formats
specifies the general register address of the first operand.

(c) R2 Field. The 4-bit R2 field in the instruction formats
specifies the general register address of the second operand.

(d) N Field. The 4-bit Data field of the SF instructions
supplies data in the case of Fixed-Point Arithmetic instructions, or a
displacement from the current Location Counter in the case of Branch
instructions:

(e) X2 Field. A nonzero X2 field in the RX and RI formats
specifies a General Register whose contents are used as an indek value.
The index value (X2) may be positive or negative. If X2 is zero, no
address modification takes place. General Registers 1 thru 15 are
optionally used for indexing, but General Register 0 is never used for
indexing.

(f) A2 Field. The 16-bit Address field specifies a memory
address in the RX format.

(g) 12 Field. The 16-bit Immediate field contains a value
(data) to be used as an immediate operand in the RI format.

(h) Ml Field (MASK). The 4-bit Ml field in the Branch
instructions is used to test the Condition Code in the Program Status Word.

(3) Format Usage. The first and second operand designations for
each instruction format conforms with Table 2-2, and the following rules
for using each instruction format:

(a) RR Format. The RR instructions are used for operations
between registers. The first operand is the contents of the register
specified by the Rl field of the instruction word. The second operand is
the contents of the register specified by the R2 field.

(b) SF Format. The SF instructions are used for: short
immediates, in which the N field specifies a 4-bit data value; short
shifts, in which the N field specifies the shift count; and short branches,
in which the N field specifies displacement (in halfwords) from the current
instruction address. The register specified by Rl contains the first
operand.

2-53

.....

TM(NORAD)-63//02/ /02 |
13 Jan 87 ,k

(c) RX Format. The RX instructions are used for operations
between register and memory with the option of indexing. The first operand
is the contents of the register specified by the Rl field of the
instruction word. The second operand is the contents of the memory
location specified by the A2 field of the instruction word, or the sum of
the A2 field and the contents of the General Register specified by the X2
field if indexing is specified. The A2 field may contain a maximum value
of 65,535.

(d) RI Format. 1In the RI instructions, the first operand is
the contents of the General Register specified by the Rl field of the
instruction word. The second operand is the number contained in the I2
field of the instruction word, or the sum of the I2 field and the contents
of the General Register specified by the X2 field if indexing is specified.
The second operand of an RI instruction specifies the number of bit
positions in Shift instructions, or forms the second operand in Immediate
instructions.

(e) Exceptions. The explanation of each instruction in
Appendix I has precedence over these rules and will result in some
exceptions to the first operand/second operand nomenclature used above.
For example, with Branch On Condition instructions, the Rl field of the
instruction is a 4-bit mask (Ml) which is ANDed with the Condifion Code in
the Current PSW. For all Input/Output instructions, the contents of the
register specified by Rl specifies the device number for the -I/0 operation.
For the Supervisor Call instruction, the Rl field specifies 1 out of 16
possible types of supervisor calls. With the Load Program Status Word
(LPSW), Simulate Interrupt. (SINT) and Auto Load (AL) instructions, the R1
field must be zero.

(f) General Register Restrictions. Each general register
functions as an accumulator or index register in all arithmetic and logical
operations with the following restrictions:

l. General register 0 is not used as an index register.
A zero entry in the X2 field of the RX and RI instruction formats shall
indicate that no indexing is to take place.

2. The Rl and/or R2 field must specify an even numbered
general register for all fullword fixed-point instructions and halfword
fixed-point multiply and divide instructions.

3. For Branch or Index instructions, the Rl field
specifies the first of three consecutive general registers, and the value
of the Rl, therefore, should be equal to or less than 13.

4. For Floating-Point instructions the Rl field and R2
field for register to register operations must be an even value, and
specify one of the Floating-Point Registers rather than one of the General
Registers.

2-54

5. With any RR type instruction, the Rl field and the R2
field may specify the same register, but special attention should be given
to note what the instruction will do.

TM(NORAD)-637/027 /02

13 Jan 87

For example, with the EPSR

instruction, if the Rl field equals the R2 field, the program status is
stored in a General Register, but the program status is unchanged.

does not specify a register.

6. In the Conditional Branch instructions, the Rl field

tested with the condition code.

e. Instruction Set and Execution Times.

Instead, it contains a mask value which is

The basic HMP-1116 contains

and is capable of executing an instruction set of 123 instructions as

specified in Table 2-3.

notation.

specified in the corresponding table less degradation due to memory refresh
for a volatile memory configuration.

The execution time for each instruction is equal to the time

memory refresh does not exceed 4.05 percent.

Overall timing degradation due to

Table 2-4 contains the extended branch mnemonics which are recognized by

CAL (Common Assembler Language),

the assembler used for the HMP-1116. CAL

recognizes the extended branch mnemonic, selects the appropriate branch
instruction from table 2-3 and inserts the M1l mask value in the Bl field.

All operation codes are represented in hexadecimal

Table 2-2. Designations for First and Second Operands

[|
First | The contents ®f the register specified | RR, RX, RI, and
Operand: | by the Rl field (Rl) | sF

l |

| The mask value M1 in the Rl field | RR, RX and SF

| | branch on

| | condition

| |

{ The actual value of the Rl field | svc

|

| |
Second | The contents of the register specified | RR
Operand: | by the R2 field (R2) [

| I

| The contents of the address derived by | RX

| adding the A2 field and the contents of |

| the General Register specified by the |

| X2 field [(A2) + (X2)] |

l |

| The I2 field plus the contents of the | RI

| General Register specified by the X2 |

| field. 12 + (X2) I

| |

| The actual value of the N field | sF

| |

2-55

_L /140
sn

140D

TM(NORAD)=-637/027/02
13 Jan 87

Table 2-3.

HMP-1116 Instruction Repertoire

Execution Times (sec)

[

| OP Code (Hex) |

Mnuemonic

; i g 1
m c s I

. . ..—.

i i ¥
Sl
e L OREEN Ny e ol da g3 Caad e
mm 5 : = 133333
T

B 323 38 3333 33 = 833 33
[5| gtnerEcRR AR $28 8% 98 £ gen g
ml 8 3 8 _ . 385833
m 308 8 Bn8E 88 8 385 83
B =SE88sBEBEBE 239 g5 5B m_ ssE: 83
% &8 B B g5gEE3
73
8| A8% 9% Ga%f $8 ¥ sy g3
mm TTR22212121913131988 T8 8TES 88 80 89999w
v B
9 4 B g
B ot e wmm . E. m
= (]
mm mmmmmmmmmmmmmm 2 .mmm,mmmmmmm m T mmmmmw
SR R R TP LR
. HoOoH SN IR - o
R L R EE L EE B FE T

R Pl

*

us.
0477 %
COVT COPIER

]

g
'

!

)

2-56

LS-T

Execution Times (sec)
[

[
| Mnemonic | OP Code (Hex) | [[[
| Data | T 1 T] I | =®rr | I
Instruction |(Bits)|RR/SF| R | RX |RR/SFI RI | RX | BRR/SF | RT | Indexed | RX | Comments
Byte Handling [I P T I I I I
Load Byte | 8 |lim | B | 9| |p3|os8 | I | 2.0 |
Store Byte | 8 IsmrR| |[smB| 92| |D 2| 1.2 | | | 2.4 |
Exchange Byte | 8 |EXER | | | % | | | 0.8 | l | I
Compare Logical Byte | 8 | | lcs | | o I | [2.0 |
Shift and Rotate | | [[| I | I
Shift Left Logical Short | 16 |ss| |] o]l | | 1a+ | | | |oeto. of Shifts
| [T I | 0.2 (1) I | I
Shift Left Halfword Logical | 16 | |staL| | | | | 1.8+ |20+ | |r=No. of Shifts
I I | R [0.2 (n-1) [0.2 (1) | I
Shift Left Fullword Logical | 32 | [sLL | | | ED | | 2.0+ |22+ | |n=Mo. of Shifts
| | I B I 0.2 (=-1) [0.2 (1) | |
Shift Right Logical Short | 16 |sris| | [90 | | | 1.4+ | | | |=o. of Shifts
| I | I]0.2 @)l | | I
Shift Right Halfword Logical | 16 | |SRHL| [| | cc | | 1.8+ |20+ | |=Mo. of Shifts
| | I I [0.2 (a-1) 0.2 (n1) | I
Shift Right Fullword Logical | 32 | |SRL | | | EC | | 2.0+ |22+ | [r=o. of Shifts
I I [| 0.2 (2-1) [0.2 (n1) | |
Rotate Left Fullword Logical | 32 | |RLL | | | EB | | | 20+ |22+ | |=o. of Shifts
I | I l l | I | 0.2 (1) |0.2 (1) | |
Rotate Right Fullword | 32 | |RRL | | | EA | | 20+ |22+ | |reNo. of Shifts
Logical | | | I | | | I 0.2 (o-1) |0.2 (1) | |
Shift Left Halfword | 16 | |stral | lcr| | |26+ |28+ | [n=No. of Shifts
Arithmetic | I I I B [0.2 (n-1) 0.2 (n-1) | I
Shift Left Fullword | 32 | Ista | | | er | | 126+ |28+ | |
Arithmetic I I | [0.2 (n-1) [0.2 (a-1) | I
Shift Right Halfword | 16 | |srHal | lce| | | 22+ |24+ | |=No. of Shifts
Arithmetic l | | I 0.2 (n-1) 10.2 (1) | I
Shift Right Fullword | 32 | [sra | | e | | | 246+ |26+ | |r=No. of Shifts
Arithmetic I I [. [0.2 (n-1) 10.2 (n-1) | |

‘€-¢ °TIqel

(P,3u0)) sayojzaadey UOTIONIISUT 9TT1T-dNH

20/120/L€9-(AVION)RL

L8 UBl €7

Table 2-3.

TM(NORAD)-637/027/02
13 Jan 87

HMP-1116 Instruction Repertoire (Cont'd)

Execution Times (sec)

[

| OP Code (Hex) |

Mnemonic

l

l

l

(Bits)|RR/SF| RT | RX |RR/SF| R | RX
|

Data |

|
l
|
I
I

Instruction
Branch on True Backward Short

Branch on True Forward Short

Branch*

No BR/BR
No BR/BR

M Index(No BR/ER);
Index (No BR/ER)
No Index/Index
Average Time
Average Time
Average Time
Average Time
Average Time
Average Time

Index (No BR/ER)
No BR/BR

— ———

-
)3
mR
: ErE
28 g

1.8/2.0
1.6/1.8;
1.8/2.0

— ——— — — —

—— E——— — — — — — Gm— o— —

Branch on False Backward Short
Branch on False Forward Short
Branch on False Condition
Branch on Index Low or Equal
Branch and Link

Floating-Point

Branch on True Condition
Branch on Index High
Floating—Point Subtract
Floating-Point Compare
Floating-Point Multiply
Floating—Point Divide
System Control

Floating-Point Store
Floating-Point Add

Floating—Point Load

SVC = Interrupt
Service Times

~
)
3 O ©
™ B -
N >
’a}
= iz
o - B o
~
e
. 3
~
o2 =
8 R 4

Load Program Status Word
Exchange Program Status
Simulate Interrupt

Supervisor Call

32
2/15

Exchange Operand Bank

— — — — — — —— —— ot G— s W—

— — —— ——— e, — — — —

—— — —— —— — — —— — ——— — —— — — — ——— — — — — —_—

—— ——— —— — — — — — —— — — ———— ————— —— —— —

— — — — — — — s —— — — | — — — — — —— — — — o, e s, T e, — e, W

Mdress

Exchange Program Address

|
_ a3

s
P~

~4. Exterded Branch Mnemonics

*See

Table

TM(NORAD)-637/027/02
13 Jan 87

2-3. HMP-1116 Instruction Repertoire (Cont'd)

Execution Times (sec)

| OP Code (Hex) |

I

739 = o § §
m 3 73171
| gets B 5 &
15444 s § &
T e9E88 T T Y S s
2 exaeaITELY SEheoaty
N I A s B S ST . B St~ S~ Pl
2
S a9 &8 -
8 3433937 33
2 KAHRARRAR R 3 8 8 5
2
B meesssg se
g T
Bl _=sBpeEEdes H B H B
2
B S amaar: oo
gl _HEEEEEZ BEE
5
8 oA %
; m i) K m s B
PRI
8 2 BdES g3 g4 2328 8
= M M pi 3 g M m m = g & &H &
g WNMmm sify S 8 3 ¢ ¢
g 45335844884 & 3 3 m m

2-59

|

"

%

31400

i
N

. .

TM(NORAD)-637/027/02 T
13 Jan 87 y O

Table 2-4. Extended Branch Mnemonics

—— —————— —— —— — — — — —— ———— — — —— —— ———— — s — —— ———— —— ——— — —————

| | oP-Code and |
Instruction | Mnemonic { M1l Mask l
|
[| |
Branch on Carry | BC | 428 |
Branch on Carry RR I BCR | 028 |
Branch on Carry Short | BCS | ° 208/218 {
| |
Branch on No Carry [BNC | 438 |
Branch on No Carry RR | BNCR | 038 |
Branch on No Carry Short | BNCS | 228/238 |
[| |
Branch on Equal | BE | 433 |
Branch on Equal RR | BER | 033 |
Branch on Equal Short | BES | 223/233 |
| | |
Branch on Not Equal | BNE | 423 |
Branch on Not Equal RR | BNER | 023
Branch on Not Equal Short | BNES | 203/213
| | |
Branch on Low | BL | 428 |
Branch on Low RR | BLR | 028 |
Branch on Low Short | BLS | 208/218 |
| | |
Branch on Not Low | BNL | 438 |
Branch on Not Low RR | BNLR | 038 |
Branch on Not Low Short | BNLS | 228/236 |
| | |
Branch on Minus | BM | 421 |
Branch on Minus RR | BMR | 021 |
Branch on Minus Short | BMX | 201/211
| | |
Branch on Not Minus | BNM | 431 |
Branch on Not Minus RR | BNMR | 031 |
Branch on Not Minus Short | BNMS | 221/231
. | | |
Branch on Plus | BP | 422 |
Branch on Plus RR | BPR | 022 |
Branch on Plus Short | BPS | 202/212 |
| | |
Branch on Not Plus | BNP | 432 |
Branch on Not Plus RR | BNPR | 032 |
Branch on Not Plus Short | BNPS | 222/232 |
| | |
Branch on Overflow | BO | 424 |
Branch on Overflow RR | BOR | 424 |
Branch on Overflow Short | BOS | 204/214
| | |
Branch on No Overflow | BNO | 434 I
Branch on No Overflow RR | BNOR | 034 I
Branch on No Overflow Short | BNOS | 224/234 |

2-60

—— — —— —— —— —— —— ——— ———

TM(NORAD)-637/027 /02

13 Jan 87
Table 2-4. Extended Branch Mnemonics (Cont'd)

| | oP-Code and |
Instruction | Mnemonic | M1 Mask |
| | |
[[|
Branch on Zero | BZ | 433 |
Branch on Zero RR | BZR | 033 |
Branch on Zero Short | BZS | 223/233 |
| | |
Branch on Not Zero | BNZ | 423 |
Branch on Not Zero RR | BNZR | 023 |
Branch on Not Zero Short | BNZS | 203/213 |
| | |
Branch Unconditional | B | 430 I
Branch Unconditional RR | BR | 030 I
Branch Unconditional Short | BS | 220/230 |
| | |
No Operation | NOP | 420 |
No Operation RR | NOPR | 020 |
| | |

Table 2-5. Memory Addressing Example
| | | | | | [|
Address | 0050 | 0051 | 0052 | 0053 | 0054 0055 | 0056 | 0057 |
| | | | | | | |
| [| | | | | |
Contents | o1 | 23 | 45 | 67 | 89 AB | ¢ | EF |
| | | | | | | |
Operand | Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte |
Length | | | | | | | |
and fe—Hal fword-wje—Hal fword—Ple—Hal fword—w»le—Hal fword—|

Position f®——————Fullword >t Fullword

f®—————Floating-Point e

For example, if the address referenced in Table 2-5 is 0050y¢, then;

A Byte-Oriented instruction would extract the value Oljg, as an

operand.

A Halfword-Oriented instruction would extract the value 012374 as

an operand.

A Fullword instruction would extract the value 01234567,¢ as an

operand.

A Floating-Point instruction would extract the value 012345674 as

an operand.

2-61

Floating-Point————=|

[31403 120~
,L 1140
sn

TARN
’_“'-r\r,__’_ N

LM\ NUKAD)—0J/7 JVULl VL | 21400

13 Jan 87 ;k 'MZ?.

¥

AN
i

f. Memory Addressing. Memory locations are numbered consecutively,
beginning at 0000, for each 8-bit byte. Operands in memory shall be
addressed by the RX type instructions. Since the address portion (A) of an
RX instruction is 16-bits wide, it is possible to directly address 65,536
bytes within a memory bank.

The Processor transfers binary information between the Memory and the
Processor as 16-bit halfwords. The instruction being performed determines
if the address specified is that of a byte, a halfword, a fullword or
floating-point word. If a byte of information is desired, either the left
or right byte of the halfword read from memory is manipulated as determined
by the specific address. If a halfword of information is desired, the
entire 16 bits read from memory are used. If a fullword or floating-point
word is desired, a second 16 bits are read from memory and combined with
the original halfword. Table 2-5 gives an example of addressing.

(1) Bank and Memory Addressing. Memory banks are numbered
consecutively from zero to three. Memory locations within a bank are
numbered consecutively, beginning at 0000, for each 8-bit byte. Bits 8 and
9 of the PSW select the memory bank for instruction accessing and bits 10
and 11 of the PSW select the memory bank for operand accessing, allowing
the operand to be in a different bank from the instruction. Operands
within a memory bank are addressed by the RX type instructions. - Since the
address portion (A) of an RX instruction is 16 bits wide, it is possible to
directly address 65,536 bytes within a memory bank.

(a) Accessing. The Processor transfers binary information
between the Memory and the Processor as 16-bit halfwords. The instruction
being performed determines if the address specified is that of a byte, a
halfword, a fullword or floating-point word. If a byte of information is
desired, either the left or right byte of the halfword read from memory is
manipulated as determined by the specific address. If a halfword of
information is desired, the entire 16 bits read from memory are used. If a
fullword or floating-point word is desired, a second 16 bits are read from
memory and combined with the original halfword. Table 2-5 gives an example
of addressing.

(b) Addressing. Bytes of information are addressed by their
specific hexadecimal address. A group of bytes combined to form a
halfword, a fullword, or floating-point word are addressed by the leftmost
byte in the group. Halfword, fullword, or floating-point word operands
must be positioned at an address which is a multiple of two. Any memory
reference for either a halfword, a fullword or floating-point word of
information must reference that halfword, fullword, or floating-point word
with an address which is a multiple of two. The use of an address which is
odd may yield an undefined result.

(2) Addressing Modes. The Processor is capable of direct
addressing, indexed addressing. and relative (Branch instructions only)
addressing modes.

2-62

TM(NORAD)-637 /027 /02 h, X
13 Jan 87 e T

(3) Effective Address Generation. The Processor generates the
effective address as follows:

(a) Direct Addressing. The second halfword of a fullword
instruction is used as the effective address within the selected bank.

(b) Indexed Addressing. The effective memory address within
the selected bank is computed as the sum of the contents of a general
purpose register and the second halfword of a fullword instruction. If the
sum exceeds 65,535, only the 16 less significant bits of sum are used
(modulo 65,536).

(c) Relative Addressing. The effective address is a 4-bit
displacement (415 halfwords) relative to the present location counter.
Bank boundaries cannot be crossed.

(4) Maximum Addressing Range. The Processor, Memory and DMA bus
are all capable of directly addressing up to 262,144 bytes of memory.

(5) Memory Allocation. Locations in memory bank zero are
allocated for Floating-Point Registers, register save areas, and interrupt
processing as specified in Table 2-6 and described in the following
paragraphs.

(a) Floating-Point Registers. Eight 32-bit registers are
reserved for use by the Floating-Point instructions. The floating-point
registers occupy memory locations 00 thru 1F and shall be addressable by
even numbers 0, 2, 4, 6, 8, A, C, E. The floating-point registers are
normally addressable by the Floating-Point instructions.

(b) Power Fail Locations. The Register Save Pointer at
Location X'22', points to the first of 16 consecutive halfword locations in
memory where the General Registers are saved in the event of power failure.
When power is restored, the General Registers are restored automatically
from these locations. The Current PSW is saved and restored in similar
fashion from Location X'24' - X'27'.

(¢) Interrupt PSWs. These locations are reserved for the 01ld
and New PSWs for the various @nternal and external interrupts.

(d) Bootstrap Loader. Locations 50 to 7F are reserved for a
bootstrap loader capable of reading a block of data from a byte-oriented
device.

(e) Channel/1/0 Termination Parameters. These locations are
used in conjunction with Termination interrupts from automatic I/0 channel

operation.

(f) Supervisor Call Parameters. These locations are used for
the PSW exchange associated with the Supervisor Call (SVC) instruction.

2-63

I1-2. CATEGORICAL LIST OF HMP1116 OPERATION CODES

Data
Instruction

(Bits)

RR/SF

Mnemonic
RL

Fixed-Point Load/Store

Load Immediate Short
Load Complement Short
Load Halfword

Load Fullword

Load from Bank O
Load from Bank 1
Load from Bank 2
Load from Bank 3
Load Multiple

Store Halfword

Store Fullword

Store in Bank O
Store in Bank 1
Store in Bank 2
Store in Bank 3

Fixed-Point

Add Immediate Short

Add Halfword

Add Halfword to Memory

Add with Carry Halfword
Add Fullword

Subtract Immediate Short
Subtract Halfword

Subtract with Carry Halfword
Subtract Fullword

Multiply Halfword

Multiply Halfword Unsigned
Multiply Fullword

Divide Halfword

Divide Fullword

4
16
32
16
16
16
16
16
16
32
16
16
16
16

4
16
16
16
32

4
16
16
32
16
16
32
16
32

LIS
LCS
LHR
LDPR

AIS
AHR

ACHR
ADPR
SIS
SHR
SCHR
SDPR

MHUR
MDPR
DHR

DDPR

I-3

LHI

Arithmetic

AHI

SHI

TM(NORAD)-637/027 /02
13 Jan 87

Op Code (Hex)
RX RR/SF RI RX

24

25
LH 08 C8 48
LDP 18 58
LHO 74
LH1 75
LH2 76
LH3 77
LM D1
STH 40
STDP 2 50
STHO F8
STH1 F9
STH2 FA
ST™™ DO

26
AH 0A CA 4A
AHM 61
ACH OE 4E
ADP 1A 5A

17
SH 0B CB 4B
SCH OF 4F
SDP 1B 5B
MH 0cC 4C
MHU 9c DC
MDP 1C 5C
DH 0D 4D
DDP 1D 5D

41900

JLLV0
sn
¥

TM(NORAD)-637/027/02

13 Jan 87
Data Mnemonic Op Code (Hex)
Instruction (Bits) RR/SF RIL RX RR/SF RI RX
Logical and Compare
AND Halfword 16 NHR NHI NH 04 C4 44
OR Halfword 16 OHR OHI OH 06 C6 46
Exclusive OR Halfword 16 XHR XHI XH 07 Cc7 47
Test Halfword Immediate 16 THI c3
Compare Halfword 16 CHR CHI CH 09 c9 49
Compare Fullword 32 CDPR CDP 19 59
Compare Logical Halfword 16 CLHR CLHI CLH 05 C5 45
Compare Logical Fullword 32 CLDPR CLDP 15 55
Byte Handling
Load Byte 8 LBR LB 93 D3
Store Byte 8 STBR STB 92 D2
Exchange Byte 8 EXBR 94
Compare Logical Byte 8 CLB D4

Shift and Rotate

Shift Left Logical Short 16 SLLS 91

Shift Left Halfword Logical 16 SLHL CD

Shift Left Fullword Logical 32 SLL ED

Shift Left Logical Doubleword 32 SLGL E7

Shift Right Logical Short 16 SRLS 90

Shift Right Halfword Logical 16 SRHL ccC

Shift Right Fullword Logical 32 SRL EC

Rotate Left Fullword Logical 32 RLL EB

Rotate Right Fullword Logical 32 RRL EA

Shift Left Halfword 16 SLHA CF
Arithmetic

Shift Left Fullword 32 SLA EF
Arithmetic

Shift Left Doubleword 32 SLQA E9
Arithmetic

Data
Instruction

Arithmetic

Arithmetic

Arithmetic

s e - -4

Branch on True Backward Short

] Branch on True

Short

! Branch on Index Low or Equal

Shift Right Halfword
Shift Right Fullword

Shift Right Doubleword

Branch on True Forward Short

Condition

Branch on False Backward

Branch on False Forward Short
Branch on False Condition

Branch on Index High

'! Branch and Link

Floating-Point

'i Floating-Point
: Floating-Point
Floating-Point

. Floating-Point
Floating-Point
Floating-Point

Load
Store
Add
Subtract
Compare
Multiply
Divide

Load Program Status Word

Exchange Program Status

Simulate Inferrupt

'
N NAAEY N AT XIS YIS T Tt

ANVTTTI

(Bits)

Mnemonic

RR/SF

16

32

32

Branch*

BTBS
BTFS
BTCR
BFBS

BFFS
BFCR

BALR

Floating-Point

32
32
32
32
32
32
32

LER

AER
SER
CER
MER
DER

System Control

32

16

EPSR

I-5

T ETATIITTT TR T MR N LY PSSt

RI

Shift and Rotate (Cont'd)

SRHA

SRA

SRQA

BXH
BXLE

LPSW

SINT

TM(NORAD)-637/027/02A'&
15 Apr 87 i

Op Code (Hex)

RX RR/SF RI RX
CE
_EE-
58
20
21
BTC 02 42
22
23
BFC 03 43
co
cl
BAL oL 41
LE 28 68
STE 60
AE 3A 6A
SE 2B 6B
CE 29 09
ME 2C 6C
DE 2D 6D
c2
96
E2

PR FILE LTI vt agiaro. S S [T P e PRstii, | 4

TM(NORAD)-637/027/02A : N
15 Apr 87 ' ¥
Data Mnemonic Op Code (Hex) J
Instruction (Bits) RR/SF RL RX RR/SF RI RX '
System Control (Cont'd)
Supervisor Call 32 A El
Exchange Operand Bank Address 2/15 EPOR 2E
Exchange Program Address 20/32 EPPR 2F _ - .
Input/Output
Acknowledge Interrupt 8 AIR Al 9F DF
Sense Status 8 SSR SS 9D DD
Output Command 8 OCR ocC 9E DE
Read Data (Byte) 8 RDR RD 9B DB
Write Data (Byte) 8 WDR WD 9A DA
Read Halfword 16 RHR RH 99 D9
Write Halfword 16 WHR WH 98 D8
Autoload 8n AL D5
Read Block 8n RBR RB 97 D7
Write Block 8n WBR WB 96 D6
List Processing
Add to Top of List 16 ATL 64
Add to Bottom of List 16 ABL 65
Remove from Top of List 16 RTL 66
Remove from Bottom of List 16 RBL 67
Added Instructions
Set Status Bits 8 SESB E4
Reset Status Bits 8 RESB E3
Load Complement Halfword 16 LCHR LCH 12 53
Load and Change Number Base 16 LCNHR LCNH 10 51
Halfword
Load Absolute Value Halfword 16 LAVR LAV 11 52
NOTE: For a list of 48-bit floating-point instructions, see Table VI-5. l

I-6

vy e S 8 R SRS r e mrm mme ey e e e Ay AN A few se—vemyt e 1, LGS R 50z = e
AR : \ s el T :) AN S R DR TR R AL L Th e vurthe

TM(NORAD)-637/027/02A

15 Apr 87
Appendix VI
INSTRUCTIONS

VI-1. CONTROLLER COMPUTER INSTRUCTIONS DESCRIPTION. The execution of each
instruction shall effect the Condition Code in the Program Status Register
as specified in the CVGL (see definitions below) chart accompanying the
description of each instruction. Each CVGL chart illustrates the possible
variations of the Condition Code where one indicates set, zero indicates
reset.,, and X indicates undefined after the execution of the instruction.
The operation code and the locations of all fields shall be as specified in
the corresponding instruction diagrams. All operation codes are
represented in hexadecimal notation. The execution time for each
instruction is specified in Appendix IV. For the purpose of this TM, the
instructions are grouped in the following categories.

Category of Instruction Number of Types Paragraph
Fixed-Point Load/Store 19 VI-1b.
Fixed-Point Arithmetic 27 Vi-lc.
Logical and Compare 20 VIi-1d.
Byte Handling . 6 VIi-le.
Shift/Rotate ' 16 VI-1f.
Branch 12 Vi-lg.
Floating-Point 13 VI-1lh.
System Control 6 Vi-1li.
Input/Output 19 VI-1j.
List Processing 4 VI-1lk.
Trigonometric 9 VI-11.
Instruction Augment Set 5 VI-1lm.
TOTAL 156
NOTE: For a list of 48-bit floating-point instructions, see Table VI-5.

The symbols and abbreviations used in the following subparagraphs are
defined as follows:

Parentheses or Brackets. Read as "the content of

R)

()
(]

€-— Arrow.

Read as "is replaced by ..." or “"replaces ...

VI-1

e
3,
Sy S

I1aus

TM(NORAD)-637/027/02A

15 Apr 87 e
A2 The 16-bit halfword address which is a part of the RX instructions.
R1 The address of a General Register, the content of which is the

first operand.
M1l Mask of four bits specifying Branch on Condition testing.

R2 The address of a General Register, the content of which is the
second operand of an RR instruction. - - -

12 The immediate value which is used as the second operand.

X2 The address of a General Register, the content of which is used as
an index value. -

N The four bit second operand used with Short Format Immediate
instructions, and the four bit displacement value used with Short
Format Branck instructions.

(0:7) A bit grouping within a byte, a halfword, or a fullword.
(8:15) Read as "0 thru 7 inclusive”, "bits 8 through 15 inclusive", etc. ;
(16:31) K

PSW Program Statuys Word of 32 bits containing the Operational Control,
Condition Code, and current instruction address.

cC Condition Code of four bits contained in the PSW.

C Carry Bit coﬁtained in the Condition Code (Bit 12 of PSW).

\Y Overflow Bit contained in the Condition Code (Bit 13 of PSW).

G Greater Than Bit contained in the Condition Code (Bit 14 of PSW).
L Less Than Bit contained in the Condition Code (Bit 15 of PSW).

+ Add |

% Subtract)

* Multiply

/ Divide

Logical comparison, when used (e.g., R1:R2)
(R1, R1+1) Fullword contained in a pair of registers.

[A2+(X2), A2+(X2)+2] Fullword located in memory.

VI-2

TM(NORAD)-637/027/02
13 Jan 87

a. Effective Address Generation. The effective address for accessing
memory will be generated by combining two MSBs and sixteen LSBs for all RX
format instructions, except if specifically stated otherwise in the
instruction description. The two MSBs shall be the operand bank bits 10
and 11 of the Current PSW. The sixteen LSBs shall be derived by adding the
A field and the content of the general register specified by the X2 field
(i.e., A2+(X2)). This shall give the item a memory addressing capacity of
256 K-bytes or 128 K-halfwords.

b. Fixed-Point Load/Store Instructions. The Fixed-Point Load/Store
instructions may be used to preset a register with an index value, load a
register with the first operand for a subsequent arithmetic operation
(e.g., add, multiply), or set the Condition Code for supplemental testing
by a Branch on Condition instruction. These instructions shall use the
Register to Register (RR), the Short Format (SF), the Register to Indexed
Storage (RX), and the Register and Immediate Storage (RI) formats. The
exact format, op-code, assembler notation, and diagrammatic representation
of each instruction shall be as shown in Figures VI-1, -2, and -3. The
operation and resulting Condition Code shall be as follows:

(1) Load Immediate Short. The Load Immediate Short (LIS)
instruction shall cause the four bit second operand to be expanded to a
16-bit halfword with high order bits set to zero. This halfword shall be
loaded into the General Register specified by Rl. The resulting Condition
Code shall be:

AN

| x | x| o] o] Operand is zero

| X | X | 0] 1| oOperand is less than zero

I X | X l 1 ‘ 0 ‘ Operand 1is greater than zero

(2) Load Complement Short. The Load Complement Short (LCS)
instruction shall cause the four bit second operand to be expanded to a
16-bit halfword with high order bits set to zero. the two's complement of
this halfword shall be loaded into the General Register specified by RL.
The resulting Condition Code shall be:

AR AT

| x| x]o]| o] Operand is zero

| x | x | o | 1| Operand 1s less than zero

| X l X I 1 ‘ 0 I Operand is greater than zero

VI-3

| XLLVO
sn
| k :

7
A
4 b e

TM(NORAD)-637/027/02
13 Jan 87

k

.

LOAD IMMEDIATE SHORT

|

(AN
oy

[RX]

LIS R1, N (A1) N

'] pal | 11012 13
24 R1 N (sr}

LOAD COMPLEMENT SHORT

Lcs R1,N (1.3 § 5 Sm—r

9 b 12 13
23 " R1 N 1SF]

LOAD HALFWORD

LHR A1, R2 (R1)y~—— (R2) .

9 pil] 12 13

, os A1l R2 {RR].

(B7] R1, A2 (X2) (R1)e—— (A2 + (X2)] BANK = PSW (10:111)

9 2ls - 11012 15116 31
48 R1 x2 A2

LHI R1, 12 (X2) (R1)ytm——— 12 + (X2) BANK = PSW (1011)

9 718 1412 15116 z 31
cs R1 x2 12

LOAD FROM BANK 0

LHO R1, A2(X2) (Ri}e—— [A2 + (X2) + O} BANK =

[} 2ls 13112 15116 N
74 A1 x2 A2

LOAD FROM BANK |

LH1 R1, A2(X2) (R1)}e— [A2 + (X2) + 65,536] BANK =

) s 11112 15(16 31
75 R1 x2 A2

LOAD FROM BANK 2

LH2 R1, A2(X2) (R1)=- (A2 + (X2 ¢ 131,072] BANK =

718 11(12 15(16 31

76 R1 x2 A2

LOAD FROM BANK 3

A3 R1, A2(X2) (A1) [A2 + (X2) + 196,608] BANK =

0 s 11112 18116 31
77 R1 X2 A2

Figure VI-1.

Vi-4

Fixed-Point Load Instructions

(R1]

(RX]

(RX]

(RX]

(RX]

]

X

LOAD MULTIPLE
LM R1, A2 (X2)

L LLYO
sn
. x

TM(NORAD)-637/027/02A "=~

1. (R1)=s— (A2 ¢ (X2)]
2. A1l XF°

15 Apr 87

IF Rl = X'F*, THE INSTRUCTION IS FINISHED

IF AL § X'F', THEN:
3 Rje—Rl ¢ 1

4, A2=a—A2 ¢ 2, AETURN TO STEP 1

(8 1] 12 18] 16 n
o1 R1 x2 Az

LOAD FULLWORD

LoPn A1, RY (R1.R1 ¢ 1) o= (R2, A2+ 1)

0 7|8 1] 12 18
¥ [18 LY n2 jlnm

Lor R1, A2 (X32) (A1, A1 o 1) a— [A2 ¢ (X2), A2+ (X2)+7)

o 718 1112 18] 16 L
W 8 L] x2 - A2

(RX)

STORE MULTIPLE

STM R1, A2 (X2)

—

« (Rl)——e={A2 + (X2))
R1: X'F*

P

(Rx1

IF Rl = X'F', THEN INSTRAUCTION IS FINISHED

IF R1 ¥ X'F', THEMN:
3. Rle-A1 ¢ |
4, A2=w—A2 ¢+ 2, RETURN TO STEP |

3
Do n1 x2) A2
STORE FULL WORD
STDP R1, A2 [X2) (RY, AL o 1)—e (A2 (X2), A2 ¢ (x2) ¢ [I
0
T8 11]12 15| 18 1
N s0 n1 %2 ~
Figure VI-2. Multiple Load/Store Instructions

VI-5

(AX)

(RX]

TM(NORAD)-637/027/02A
15 Apr 87

STORE HALF WORD

STH R1, AZ (X2)

(R1)——a={AZ + (X1)]

BANK @ PSW (10:11)

11]12 15]16 31
40 A1 x2 A2 (RX]
STORE |N BANK 0 (R1) —e= [A2 + (X2) + Q) BANK = 0
STHO R1, A2(X2) 11112 15116 I
rs A1 x2 A2 (RX]
STORE IN BANK 1 (R1)—== (A2 + (X2) ¢ 65,336] BANK = 1
T™H 1R A '
A AN XA 11112 15116 31
re R1 x2 A2 (RX]
SOTRE IN BANK 2 (R1)—o= [A2 + (X2) ¢ 131,072] BANK = 2
STH2 A1, A2(X2)
11112 15 (16 3
ra R1 X2 A2 (RX]
STORE IN BANK 3 (R1)—e [A2 + (X2) + 196,608] BANK = 3
A
STH3 A1, A2(X2) 13412 it -
rs Rr1 x2 A2 (RX]

Figure VI-3.

Fixed-Point Store

VI-6

Instructions

TM(NORAD)-637/027/02A
15 Apr 87

(3) Load Halfword. The Load Halfword (LHR. LH, LHI) instructions
shall cause the second operand to be loaded into the General Register
specified by R1. In the RR format, if Rl equals R2, the load instruction
shall function as a test on the content of the register. In the RX format,
the second operand shall be located on a halfword boundary. The resulting
Condition Code shall be:

AN o
| x| X] 0] 0] oOperand is zero

| x | x] o |1 | Operand is less than zero

’ X | X l 1 | 0 | Operand is greater than zero

(4) Load Fullword Instructions. The load fullword (LDPR and LDP)
instructions cause the second fullword operand to be loaded into the
general registers specified by Rl and R1 + 1. Rl and R2 specify even
numbered registers. In the RR format, if Rl equals R2, the load
instruction functions as a test on the contents of the register pair. In
the RX format, the second operand is located on a halfword boundary. The
resulting Condition Code shall be:

e

| x | x] o] 0] oOperand is zero

| X | X | o |1 I Operand is less than zero

‘ X | X ' 1 l 0 I Operand is greater than zero

(5) Load From Bank 0. The Load From Bank O (LHO) instruction
shall be a halfword load instruction whose effective address shall be
computed relative to bank O, without regard to the operand bank bits
(10:11) in the Current PSW. The instruction shall cause the second operand
to be loaded into the General Register specified by Rl. The second operand
shall be located on a halfword boundary. The resulting Condition Code
shall be:

Lo]

| x| x| 0] 0| oOperand is zero

| x | x | i l Operand is less than zero

| X | X l 1 l 0 | Operand is greater than zero

Vi-7

L T

L + -

Y-

TM(NORAD)-637/027/02A
15 Apr 87

(6) Load From Bank 1. The Load From Bank 1 (LHl) instruction
shall be a halfword load instruction whose effective address shall be
computed relative to bank 1, without regard to the operand bank bits
(10:11) in the Current PSW. The instruction shall cause the second operand
to be loaded into the General Register specified by Rl. The second operand
shall be located on a halfword boundary. The resulting Condition Code
shall be:

AR -
| x | x| o] o] Operand is zero

| % | x | o |1 | Operand is less than zero

, ¢ l X | 1 l 0 | Operand is greater than zero

(7) Load From Bank 2. The Load From Bank 2 (LH2) instruction
shall be a halfword load instruction whose effective address shall be
computed relative to bank 2, without regard to the operand bank bits
(10:11) in the Current PSW. The instruction shall cause the second operand
to be loaded into the General Register specified by Rl. The second operand
shall be located on a halfword boundary. The resulting Condition Code
shall be:

AN

| x| x]o]o | Operand 1s zero

| x | x | o | 1 | Operand is less than zero
‘x'x|1'o

‘ Operand is greater than zero

(8) Load From Bank 3. The Load From Bank 3 (LH3) instruction
shall be a halfword load instruction whose effective address shall be
computed relative to bank 3, without regard to the operand bank bits
(10:11) in the Current PSW. The instruction shall cause the second operand
to be loaded into the General Register specified by Rl. The second operand
shall be located on a halfword boundary. The resulting Condition Code
shall be:

A

| X | X | 0 | 0 | Operand is zero

[® | X| o | a I Operand is less than zero

I X | X ‘ 1 I 0 | Operand 1s greater than zero

VI-8

e

- 7

-

{" *Z@'
‘ ¥
TM(NORAD)-637/027/02A ..
15 Apr 87

S—

(9) Load Multiple. The Load Multiple (LM) instruction shall cause |
sequential halfwords from memory to be loaded into successive General
Registers, beginning with the General Register specified by the Rl field.
The first halfword shall be defined by A2+(X2) and shall be located on a
halfword boundary. The operation shall be terminated when R15 is loaded
from memory. Note that any number of sequential General Registers can be
loaded in this manner. The Condition Code shall be unchanged by the
execution of this instruction.

(10) Store Multiple. The Store Multiple (STM) instruction shall l
cause successive General Registers to be stored sequentially into memory,
beginning with the General Register specified by the Rl field. The first
storage address shall be determined by A2+(X2) and shall be located on a
halfword boundary. The operation shall be terminated when R15 is stored in
memory. Note that any number of sequential General Registers can be
transferred in this manner. The Store Multiple (STM) instruction, in
conjunction with the Load Multiple (LM) instruction is an aid to subroutine
execution. They permit the easy saving and restoring of the registers
required by the subroutine. The Store Multiple instruction can be used
upon entering the subroutine, and the Load Multiple would be the last
instruction executed before returning from the subroutine. The Condition)
Code shall be unchanged by the execution of this instruction. z

(11) Store Halfword. The Store Halfword (STH) instruction shall l
store the 16-bit first operand in the memory location specified by the
second operand. The second operand shall be located on a halfword

boundary. The first operand shall remain unchanged. The Condition Code
shall remain unchanged.

(12) Store In Bank 0. The Store in Bank O (STHO) instruction shall |
be a halfword store instruction whose second operand effective address
shall be computed relative to bank 0, without regard to the operand bank
bits (10:11) in the Current PSW. The instruction shall store the 16-bit
first operand in the memory location specified by the second operand. The
second operand shall be located on a halfword boundary. The first operand
shall remain unchanged. The Condition Code shall remain unchanged.

(13) Store In Bank 1. The Store in Bank 1 (STH1l) instruction shall |
be a halfword store instruction whose second operand effective address
shall be computed relative to bank 1, without regard to the operand bank
bits (10:11) in the Current PSW. The instruction shall store the 16-bit
first operand in the memory location specified by the second operand. The
second operand shall be located on a halfword boundary. The first operand
shall remain unchanged. The Condition Code shall remain unchanged.

(14) Store In Bank 2. The Store in Bank 2 (STH2) instruction shall l
be a halfword store instruction whose second operand effective address
shall be computed relative to bank 2, without regard to the operand bank
bits (10:11) in the Current PSW. The instruction shall store the 16-bit
first operand in the memory location specified by the second operand. The
second operand shall be located on a halfword boundary. The first operand
shall remain unchanged. The Condition Code shall remain unchanged.

VI-9

TM(NORAD)-637/027 /02A
15 Apr 87

(15) Store In Bank 3. The Store in Bank 3 (STH3) instruction shall
be a halfword store instruction whose second operand effective address
shall be computed relative to bank 3, without regard to the operand bank
bits (10:11) in the Current PSW. The instruction shall store the 16-bit
first operand in the memory location specified by the second operand. The
second operand shall be located on a halfword boundary. The first operand
shall remain unchanged. The Condition Code shall remain unchanged.

(16) Store Fullword Instructions. The store fullword (STDP)
instruction causes two successive general registers to be stored - ~ -
sequentially into memory, beginning with the general register specified in
the Rl field. Rl specifies an even numbered register. The first storage
address 1s determined by A2 + (X2) + 2. The contents of the general
register pair remains unchanged. The Condition Code remains unchanged.
This instruction is subject to memory protect (when available).

c. Fixed-Point Arithmetic Instructions. The item shall execute the
Fixed-Point Arithmetic instructions to provide for addition, subtraction,
multiplication, and division of a fixed-point data contained in the general
register and/or memory. The Fixed-Point Arithmetic instructions provide
for calculating addresses and indexes for counting, and for general purpose
fixed-point arithmetic. The Fixed-Point Arithmetic instructions shall use
the RR, SF, RX, and RI formats. The exact format, op-code, assembler
notation, and diagrammatic representation of each instruction shall be as
shown in Figures VI-4, -5, -6, and -7. The operation and resulting
Condition Code shall be as follows:

(1) Add Immediate Short.. The Add Immediate Short (AIS)
instruction shall cause the four bit second operand N to be added to the
contents of the General Register specified by Rl. The second operand shall
be expanded to a 16-bit halfword by forcing the high order bits to zero.
The resulting Condition Code shall be:

A

| X|x]o]o] Sum is zero

| x| x | o | 1] Sum is less than zero

| X | x| a | 0 | Sum is greater than zero
| X | 1 | X | X | Arithmetic overflow

' 1 | X I X I X ‘ Carry

VI-10

7
L\g

P
TM(NORAD)-637/027/02A ~— "
15 Apr 87

(2) Add Halfword. The Add Halfword (AHR, AH, and AHI)
instructions shall cause the second operand to be added algebraically to
the contents of the General Register specified by Rl. The result of this
16-bit addition replaces the contents of the register specified by Rl. In
the RX format, the second operand must be located on a halfword boundary.
The Add Halfword Immediate (AHI) instruction shall produce a value which is
the algebraic sum of the address field itself, the content of a General
Register index (X2), and the first operand General Register (Rl).The
resulting Condition Code shall be: Sl

el

| X | X] 0] 0| Sumis zero

| X l X | 0 l 1 | Sum is less than zero

| x | x | 1]o0 | Sum is greater than zero
| X | 1| x| X | Arithmetic overflow

I 1 , X l X ' X ‘ Carry

VIi-10.1
(Reverse 1is Blank)

' XLLYD
| ey

TM(NORAD)-637/027/02A

15 Apr 87
ADO IMMEDIATE SHORT .
Als RI1. N (R1)e—— (A1) *+ N
0s 718 11[12 13 R
. 26 R1 N (sr) -
ADO HALFWORD
AHA R1, R2 (R1}e—0(R1) 4 (R2)
9 7|8 11[12 13
o oA ‘n2 * R2 (RR)
AH R1A {X2) (R1ye——(A1) & [A2 + (X2)]
9 7| 11[12 1s}1s o 3
K 4a R1 x2 A2 (RX]
AHI R1,12 (X2) (Rl}a—— (R1) + 12 ¢ (X2)
o 7|8 11112 15|18 3
CA Al x2 : 12 (A1} kL
ADD FULL ~0AD
ADPA Ry, A2 (R1, A1 e 1ee (A1, A1 4 1) e (N2 R+ 1)
o] 7/ 11012 15
| 1A L3} LX) (LLY
ADP R1, A2 (X2) (R1,R1 4 1ee (A1, R+ 1)s[A2¢(X2), A2+ (X2]I
[¢] 1] 11712 18 |16 3
¥ A R x2 A2 (LR 3]
ADO HALFWORD TO MEMORY
AHM Al, A2 (X2) (A2 + (X2))=—_(A1) & [A2 & (X2)]
0 718 1112 15 1¢ 2 n
] €1 A1 x2 A2 (RX)
ADD WITH CARRY HALFWORD .
ACHR R1, R2 (R}e— (A1) ¢ (A2)+C
0 718 11112 15
bl oe R1 R2 (RR]
ACH R1, A2 (X2) (Rl)=s— (A1) + (A2 + (X2)] +C
o 718 11112 15 116 21
n 4 R1 x2 A2 (RX]

Figure VI-4. Fixed-Point Add Instruction

VI-11

=

=

R
' ¥

TM(NORAD)-637/027/02A -orw=e+

15 Apr 87
SUSTRALCT IMMEDIATE 84ONAT
s Al N (Rl) =—— (m]) -N 5
0 7,8 1112 13
27 L} N (sF)
SUSTRALT HALFWORD
SHA AL, A2 (R1)e—o (R]) -(A2)
0 71 L1112 13
oa R R2 (RA)
4 AL, 12 (X2) (Al)e—— (R]) =[A2 ¢ (X2)]
) 7,0 112 T n
(]] ni x2 A2 (mXx)
M1 AL AL (XD (RN =—— (A1) {i2-(x2)] %
) 7,8 up? 13118 3
ce L3} x2 12 (1]
SUSTRACT FULL WORD
SOPR R, R2 (A, R1 e 1)e— (R, A1+ 1)-(R2 R2+ 1)
o 1(9 1112 18
. R Ra LYY
sor R1, A2(X2) (R1, RY ¢ 11— (RY, R1e1)=[A2+(X2), A2¢(x2)+})
o 7]8 11]12 18)1¢ 3
1] ni x1 Al tAxl
SUSTRACT WITH CARRY HALFWORD
SCHR R1, R2 (A1) (A1) -[R2) -C
(-] 718 iz 13
or Ry n2 (RR)
SCH "R1,A (X2) (Rl) = [R1) - [A ¢ (X2)] -C
] 7,8 11,12 15,16]|
ar LY} x2 A2 LES

Figure VI-5. Fixed-Point Subtract Instructions

VI-12

i ¥

.
TM(NORAD)-637/027/02A "I~
15 Apr 87
MULTIPLY HALFWORD
MR Ay, A2 (R],RY ¢ J)e—(R] ¢) (A2)
0 7{s 1112 13
oc Rr) n? {RR)
[V R, A2(X2) (RI.R1 ¢ 1pe—qR] ¢ 1) (A2 ¢ (X2))
0 A 12 15he 11
a
ac LY x2 A2 1ax)
- - 3
MULTIPLY FULL WORD
MOPR R, R2 (R, AT e 1 A1 ¢ 2 Ry e J)e— (A1 e 2 R1+I1°* (A2 R2 1)
[+] 7] 11§12 18
1c LR} Rr2 LYY
MDP A1, A2(X2) R, RY e Y\, RY 2 ATedle— (R1+2 A1 3] ° [A21X2), A2¢°1X2) 2]
] 718 11]12 18] 16 3
sc 5C 1 x2 A2 1Ax)
MULTIPLY HALFWORD UNSIGNED
MR Al A2 (R, A] e | }eyff] ¢ 1)* (R2)
o ' a0 BRI IR 15 £
*cC a1 A2 |RA)
([LE) AL, A2 (X2) R], AL+ 1)e—dR) « 1)° [A2 ¢ (X2)]
Q e 12 1816 31
oc A1 x2 A2 18 x|
Figure VI-6. Fixed Point Multiply Instructions
DIVIDE HALFWORD
o~A), A2 (R1 ¢+ J)=—qn) R+ 1)y(R2)
(R))=— REMAINDER
0 718 1|12 1K)
oo n) n2 LD
D+ A1, A2(x2) (R1 * 1) (A1, AL ¢ 1)/[A2 * (X2])
(R]Vepoooo AEMAINDER
° ne 12 18,16 b Y
40 Al x2 A2 1Rx |
DIVIDE FULL WORD
R (M1 e 2 ARY e 3)e— (RY, Atie 1 RY1 2, ARY ¢ J)/IRI. R+ 1)
20 . A3 (R, Al e 1Ne—u_ REMAINDER
o 7]s 11]12 18
10 ni na IAR)
Doe RIAZIX2Z) (A1 e 2 A1 ede— (AL, A1o 1 RTe2 AT IN/[A2 (X2, A2 0 (X2 o2
(M1, A1 ¢ 1) e— REIMAINDER
[:] 718 11(12 18]18 311
80 R x2 A2 IAX;
Figure VI-7. Fixed-Point Divide Instructions

VI-13

TM(NORAD)-637/027/02A ;
15 Apr 87 o,

(3) Add Halfword to Memory. The Add Halfword to Memory (AHM)
instruction shall cause the second operand [A2+(X2)] to be added to the
contents of the General Register specified by Rl. The result of the
addition shall not replace the contents of Rl; but, instead, shall be
stored in memory at the address specified by A2+(X2). The first operand
(R2) shall remain unchanged. This instruction effectively permits every
location in core memory to be used as a counter. The second operand shall
be located on a halfword boundary. The resulting Condition Code shall be:

AN
| x| x]o]o | Sum is zero

| X | x| 0| 1] Sumis less than zero

| X | x| 1] 0| Sumis greater than zero

| X | 1| x| X| Arithmetic overflow

. 1| x | X l X ' Carry

|

(4) Add With Carry Halfword. The Add With Carry Halfword (ACHR "
and ACH) instructions shall cause the 16-bit second operand and the Carry z
Bit of the Condition Code (PSW 12) to be added algebraically to the General
Register specified by. Rl1. The resulting sum shall be contained in Rl. The
second operand shall be unchanged. Multiple precision addition operations
require a carry forward from the least significant operands to the most
significant. To accomplish this, the locations containing the least
significant portions of the two operands are summed using the Add Halfword
(AH) instruction. A carry forward, if it occurs, is retained in the carry
bit position of the Condition Code (PSW 12). The locations containing the
next least significant portions of the two operands are then summed, using
the Add With Carry Halfword (ACH) instruction. The carry bit contained in
the Condition Code (set from the previous addition) participates in this
sum; the carry bit position is then set to reflect the new result. The Add
With Carry Halfword (ACH) instruction is used on succeeding pairs of
operands until the most significant operand of the multiple precision words
have been summed. The resulting Condition code is valid for testing the
multiple precision word. The Condition Code shall be:

o]

I

| % | x| o] o] Sum is zero

| x | X|o]1 | Sum is less than zero

| x| x| 1]o| Sum is greater than zero
| X | 1] X | X | Arithmetic overflow

I 1 I X I X | X l Carry

VI-14

TM(NORAD)-637/027/02A
15 Apr 87

(5) Add Fullword Instructions. The add fullword (ADPR and ADP)
instructions cause the fullword second operand to be added algebraically to
the contents of the general register pair specified by R1, R1 + 1. Rl and
R2 specify even numbered registers. In the RX format, the second operand
is located on a halfword boundary. The resulting Condition Code shall be:

el -
| x | x| 0] 0] Sumis zero

| x| x| o | 1| Sum is less than zero

| x | x | 1 | o | Sum is greater than zero

l x| 2 | X | X | Arithmetic overflow

| 1| x| x| x| carry

N N I

(6) Subtract Immediate Short. The Subtract Immediate Short (SIS) |)
instruction shall cause the four bit second operand N to be subtracted from 2
the contents of the general register specified by Rl. The second operand
is obtained by expanding the four bit data field of N to a 16-bit halfword
by forcing the high order bits to zero. This instruction is useful for
decrementing a register by a small value (e.g., X'2'). The resulting
Condition Code shall be:

el
| x| xlo]o | Sum is zero
| x | x]o|1 | Sum is less than zero
| x| x |a | o | Sum is greater than zero
| X | 1| x| X| Arithmetic overflow
I 1 l X l X I 4 I Carry
(7) Subtract Halfword. The Subtract Halfword (SHR, SH, and SHI) l

instructions shall cause the second operand to be subtracted from the
general register specified by Rl. The difference shall be contained in RL.
The second operand is unchanged. In the RX format, the second operand
shall be located on a halfword boundary. The Subtract Halfword Immediate
(SHI) instruction shall produce a value which is the difference between the
first operand general register (Rl), less the sum of the address field
itself and the content of a General Register Index (X2). The resulting
Condition Code shall be:

VI-15

TM(NORAD)-637/027/02A

15 Apr 87
AR
| x| Xx] 0| 0] Sumis zero
x| %] 0 | 1] sSum is less than zero
| x| x|1]o0| Sum is greater than zero
| X | 1| x| X | Arithmetic overflow
I 1 l X | X | X | Carry -7

(8) Subtract Fullword Instruction. The subtract fullword (SDPR
and SDP) instructions cause the fullword second operand to be subtracted
algebraically from the contents of the general register pair specified by
Rl, Rl + 1. The result replaces the contents of the register specified by
Rl1, R1L + 1. Rl and R2 specify even numbered registers. In the RX format,
the second operand is located on a halfword boundary. The resulting
Condition Code shall be:

Le | v e ‘ L I

1 1 1 .

| X | X | 0 | 0 | Sum is zero

x| x})o | 1| Sum is less than zero

| x | x| 2 |0] Sum is greater than zero
| X | 1 | x| X | Arithmetic overflow

l 1 | X I X I X ‘ Carry

(9) Subtract With Carry Halfword. The Subtract With Carry
Halfword (SCHR and SCH) instructions shall cause the 16-bit second operand
with the carry (borrow) bit to be subtracted from the general register
specified by Rl. The difference shall be contained in Rl. The second

operand shall be located on a halfword boundary. The resulting Condition
Code shall be:

el

| x| x]o] o] Sum is zero

| x | x| o | 1] Sum is less than zero

] x| x|1]o] Sum is greater than zero
| X | 1 | x| x| Arithmetic overflow

| 1 ‘ X I X | X \ Carry

VI-16

TM(NORAD)-637/027/02A
15 Apr 87

(10) Multiply Halfword. The Multiply Halfword (MHR and MH)
instructions shall cause the 16-bit second operand to be multiplied by the
contents of the general register specified by Rl1l. The Rl field of the
instruction shall specify an even numbered register. The resulting 32-bit
product shall be contained in Rl and R1+1l, an even-odd pair; the second
operand shall be unchanged. The sign of the product shall be determined by
the rules of algebra. In the RX format, the second operand shall be
located on a halfword boundary. After multiplication, the most significant
fifteen bits with a sign shall be contained in Rl. The least significant
sixteen bits shall be contained in Rl1+l. The Condition Code shall remain
unchanged.

(11) Multiply Fullword Instructions. The multiply fullword (MDPR
and MDP) instructions cause the fullword second operand to multiply by the
contents of the general register pair specified by Rl + 2, R1 + 3. Rl and
R2 specify even numbered registers. In the RX format, the second operand
is -located on a halfword boundary. The resulting 64-bit product is
contained in R1, R1 + 1, Rl + 2, Rl + 3. The sign of the product is
determined by the rules of algebra. After multiplication, the most
significant 31 bits with sign are contained in Rl1, Rl + 1. The least
significant 32 bits are contained in Rl + 2 and Rl + 3. The Condition Code
shann remain unchanged.

(12) Multiply Halfword Unsigned. The Multiply Halfword Unsigned
(MHUR and MHU) instructions shall cause the 16-bit second operand to be
multiplied by the contents of the general register specified by R1+1. All
sixteen bits of both operands shall be considered to be magnitude. The
resulting 32-bit product shall be contained in Rl and R1+1l, and the second
operand shall be unchanged. The Rl field of the instruction shall specify
an even numbered register. This instruction is most useful in applications

requiring multiple precision multiply capability. The Condition Code shall
remain unchanged.

(13) Divide Fullword Instructions. The divide fullword (DDP and
DDPR) instructions cause the fullword second operand to be divided into the
double word dividend contained in the general register specified by R1l,
Rl + 1, Rl + 2, Rl + 3. Rl and R2 must specify even numbered registers.
The resulting 31-bit quotient with sign is contained in Rl + 2, Rl + 3; a
31-bit remainder 1s contained in R1, Rl + 1. The sign of the result is
determined by the rules of algebra; the sign of the remainder is the same
as the sign of the dividend. 1In the RX format, the second operand is
located on a halfword boundary. Attempted division by zero, or a quotient
which would be greater than X'8000', causes a fixed-point divide fault
interrupt, 1f enabled by bit 3 of the program status word. The operands
remain unchanged when a fixed-point divide fault interrupt occurs. The
Condition Code shall remain unchanged in all cases.

Vi-16.1
(Reverse is Blank)

TM(NORAD)-637/027/02 ot R
13 Jan 87

(10) Divide Halfword. The Divide Halfword (DH and DHR)
instructions shall cause the 16-bit second operand to be divided into the
32-bit dividend contained in the general register specified by Rl and R1+l.
The first operand (Rl) shall specify an even numbered register. The
resulting fifteen bit quotient, with sign, shall be contained by Rl+l; a
fifteen bit remainder, with sign, shall be contained in Rl. The second
operand shall be unchanged. The sign of the result shall be terermined by
the rules of algebra; the sign of the remainder shall be the same as the
sign of the dividend. In the RX format, the second operand shall be
located on a halfword boundary. Attempted division by zero, or a quotient
which would be greater than X'8000", shall cause termination of the
instruction execution and a Fixed-Point Divide Fault Interrupt (if enabled
by Bit 3 of the Program Status Word). The operands shall remain unchanged
when a Fixed-Point Divide Fault Interrupt occurs. The Condition Code shall
be unchanged in all cases.

d. Logical and Compare Instructions. The item shall execute Logical
and Compare instructions such that each bit of the first operand is
logically combined, or compared, with the corresponding bit in the second
operand. The Logical and Compare instructions shall use the RR, RX, and RI ’
formats. The exact format, op-code, assembler notation, and diagrammatic s
representation of each instruction shall be as shown in Figures VI-8 and
-9. The operation and resulting Condition Code shall be as follows:

(1) AND Halfword. The AND Halfword (NH, NHR, NHI) instructions
shall cause the logical product of the 16-bit second operand, and the
content of the general register specified by Rl, to replace the content of
Rl. The 16-bit product shall be formed on a bit-by-bit basis. In the RX
format, the second operand shall be located on a halfword boundary. The
AND Halfword Immediate (NHI) instruction shall produce a value which is the
logical product of the address field itself plus the content of a General
Register index (X2) with the first operand general register (Rl). The
truth table for the AND function is:

OAND O =0
OAND 1 =0
1 AND O =0
1AND 1 =1

The resulting Condition Code shall be:

A

| x | x | o] o] Logical product is zero
lx[x]o]1]

I X ‘ X ‘ 1 | 0 Logical product is not zero

VI-17

) (ILLVO
sn
‘ x

TM(NORAD)-637/027/02 P
13 Jan 87 SRR

AND HALFWORD

NHA R1, R2 (R1)~e— (R1) AND (R2)
0 s 112 15
1 04 A1 R2 (RR]
NH R1, A2 (X2) {R1) == (A1) AND (A2 + (xX2))
° 7,8 11,12 15,16 n
) 44 R1 . X2 A2 (RX)
NH) R1,12 (X2) (R1) “— (R1) AND 12 + (X2)
o 7,8 11,12 = 15 16 1
N ca . R1 X2 . 12 (R1)

OR HALFWORD
OHR R1, R2 (R1)=—(R1) OR (R2)
0 7,8 11012 1s

i 08 R1 R2 (RR]

OH R1, A2(X2) (R1)}=—> (R1) OR [A2 + (X2)]

o 7,8 11,12 1516 n
48 A1 X2 - A2 [RX]
OHI (R1)=——{R1) OR 12 + (X2))
o . 7,8 11,12 15,16 a1
A ce R1 x2 12 (R1]
EXCLUSIVE OR HALFWORD
XHR A1, R2 (R1-e——(R1) XOR (R2)
o 7,8 1112 18
ft o7 R1 R2 (RR]
XH R1, A2 (X2)' (R1)=— (R1) XOR [A2 + (X2))
(] 7,8 11,12 15,16 3
W 47 A1 x2 A2 [RX]
XH) R1, 12 (X2) (R1)~e— (R1) XOR 12 ¢ (X2)
0 7,8 11,12 15,16 3N
W c7 R1 x2 12 (R1)
TEST HALFWORD IMMEDIATE ’
THI | R1,12(X2) (R1) AND 12 + (X2
o 78 1112 15,16 3
1 c3 A1 - X2 12 (R1]

Figure VI-8. Logical and Bit Manipulating Instructions

VIi-18

L XU
sn
‘ ¥

TM(NORAD)—=637/027/02A "3 =y

15 Apr 87
COMPARE LOGICAL HALFWORD
CLHR Ay, R2 tR1).(R2)
[} e 12 19
L) 03 Ay R2 (LY
cLm R, A2 (X2) (A1) : IA2 = (X2) iz -
. 40 ne 11412 13106 b]
f 43 R\ x2 A2 1%
curr R1L12(X2) (nu.Pz-:sz
o e 11112 13106 s
n cs nl x2 12 1ax)
COMPARE LOGICAL FULL WORD .
cLprn ni, R2 (RY, A1 e 1) :(R2, R2 1)
o 7] 1112 18
‘J 18 n rR2 LYY
/
cLor Ry, A2 (X2) (RY, A1 e 10: [A2 ¢ (X2, A2 ¢ (X2]+2) .
0 1 1112 15|16 31}
! 11 n1 X2 A2 'lkll
COMPARE HALFWORD
CHR Ri, R2 (R1): (R2)
0 74 11112 1%
\ oy . R1 R2 {RR]
(] RY, A2 (X2) (M) : (A2« (X)) .
0 ne 11912 1516 3)
.
I ay R x2 A2 1Rx)
cHr RIL12 (X2} |un{|:o(xz\]
° ne IRTLES 18116 3N
cy R x2 12 18
COMPARE FULL WORD
(3141 Ay, A2 (RY, Rt ¢ 1) (R2, A2 V)
0 118 11112 18
¥) R n2 LY
cor IR, A2(X2) (RY, RY e 1) A2« (X2), A2 ¢ (X2) ¢ 2]
0 L 11] 12 18|16 EAE
(1] R x2 A2 _]|nx|

Figure VI-9.

Compare Instructions

VI-19

n w
TM(NORAD)-637/027/02A K 4

15 Apr 87 s

(2) OR Halfword. The OR Halfword (OH, OHR, OHI) instructions
shall cause the logical sum of the 16-bit second operand and the content of
the general register specified by Rl to replace the content of Rl. The
16-bit sum shall be formed on a bit-by-bit basis. In the RX format, the
second operand shall be located on a halfword boundary. The OR Halfword
Immediate (OHI) instruction shall produce a value which is the logical sum
of the address field itself plus the content of a General Register index
(X2) with the first operand general register (Rl) The truth table for the
OR function is:

OORO =0
OOR1 =20
10R0=0
10R1 =1

The resulting Condition Code shall be:
|
0 |
1|
']
(3) Exclusive OR Halfword. The Exclusive OR Halfword (XH, XHR,
XHI) shall cause the logical difference of the 16-bit second operand and
the general register specified by Rl to replace the content of Rl. The
16-bit difference shall be formed on a bit-by-bit basis. In the RX format,
the second operand shall be located on a halfword boundary. The Exclusive
OR Halfword Immediate (XHI) instruction shall produce a value which is the
logical difference of the address field itself plus the content of a

General Register index (X2) with the first operand general register (Rl).
The truth table for the Exclusive OR function is:

c|V /|G

Logical sum 1s zero

Logical sum is not zero

o -)
-
-~ O O

AN
x| x ol
| x| x]o]
Y

0O XORO0=0
OXOR1=0
1 XOR 0 =0
1 X0R1=1

Logical sum is zero

KoK X
- O O

I Logical sum is not zero

VI-20

\{an
TM(NORAD)-637/027/02A) ¢
15 Apr 87 I~

(4) Test Halfword Immediate. The Test Halfword Immediate (THI)
{nstruction shall cause each bit in the 16-bit second operand to be
logically ANDed with the corresponding bit in the general register
specified by Rl. The contents of Rl and the second operand shall remain
unchanged. The Test Halfword Immediate instruction can be used to test the
state of individual bits, or combinations of bits, in a general register.
For example, to test the state of Bit 6 in Register 3, use THI 3,X'0200'.
The resulting Condition Code shall be:

el

| x | X | o | 0| None of the bits of the result set

| x | x | o | 1 I Bit 0 of the result set

I X l X l 1 | 0 l One or more of bits 1-15 of the result set

(5) Compare Logical Halfword. The Compare Logical Halfword (CLHR,
CLH, and CLHI) instructions shall cause the first operand specified by Rl
to be compared logically to the 16-bit second operand. The result shall be
indicated by the setting of the Condition Code PSW (12:15). Both operands
shall remain unchanged. The logical comparison shall be performed by
subtracting the second operand from the first operand. The result shall be
in the Condition Code setting, and the operands shall not be modified. The
Compare Halfword Immediate (CLHI) instruction shall produce a value which
is the logical comparison of the address field itself plus the contents of
a General Register index (X2) with the first operand general register (Rl).
In the RX format, the second operand shall be located on a halfword
boundary. The resulting Condition Code shall be:

N

| X I X | 0 | 0 I First operand equal to second operand

I X | X I 0 l 1 | First operand not equal to second operand
lx|x|1]o]

| 1 | x | X | x| First operand less than second operand
EREIR2E:

|

|

(6) Compare Logical Fullword Instructions. The compare logical
fullword (CLDPR and CLDP) instructions cause the fullword first operand
specified by Rl, Rl + 1 to be compared logically to the fullword second
operand. The result is indicated by the setting of the Condition Code
PSW 12:15. Both operands remain unchanged. Rl and R2 specify even
numbered registers. 1In the RX format, the second operand is located on a
halfword boundary. The logical comparison is performed by subtracting the
second operand from the first operand. The result is indicated in the
Condition Code setting; the operands are not modified. The resulting
Condition Code shall be:

First operand equal to or greater than
second operand

Vi-21

TM(NORAD)-637 /027 /02A

15 Apr 87
I
| X | X] 0| 0] First operand equal to second operand
| x | x| 0| 1| First operand less than second operand
| X | X | 1 | 0 | First operand greater than second operand
| 1| x| X | X | First operand less than second operand
Io X x‘x

"]

(7) Compare Halfword. The Compare Halfword (CHR, CH, and CHI)
instructions shall cause the first operand specified by Rl to be compared
to the 16-bit second operand. The comparison shall be algebraic, taking
into account the sign ard magiiitude of each number. The result shall be
indicated by the setting of the Condition Code PSW (12:15). Both operands
shall remain unchanged. In the RX format, the second operand shall be
located on a halfword boundary. The Compare Halfword (CH) instructiouns,
permit arithmetic comparison of signed two's complement 16-bit integers.
The resulting Condition Code shall be:

First operand equal to or greater than
second operand & =

A

| x| x]o]o | - First operand equal to second operand

| x | x| 0| 1| First operand less than second operand

| x| x | 1] 0| First operand greater than second operand
| 1| x| x| X | First operand less than second operand
{oix xlx

(8) Compare Fullword Instructions. The compare fullword (CDPR and
CPD) instructions cause the fullword first operand specified by R1, Rl + 1
to be compared to the fullword second operand. The comparison is
algebraic, taking into account the sign and magnitude of each number. The
result is indicated by the setting of the Condition Code PSW (12:15). Both
operands remain unchanged. Rl and R2 specify even numbered registers. 1In
the RX format, the second operand is located on a halfword boundary. The
resulting Condition Code shall be:

First operand equal to or greater than
second operand

el

| X I X I 0 | 0 | First operand equal to second operand

| x| x] 0| 1| First operand less than second operand

| % [x | 1] o | First operand greater than second operand
| 1| X | X | X| First operand less than second operand

{ 0 I X l X l X \ First operand equal to or greater than

second operand

Vi-21.1

~
i

uuuuu

TM(NORAD)-637/027/02A
15 Apr 87

e. Byte Handling Instructions. The item shall execute the Byte
Handling instructions to provide for transferring bytes between memory and
the general registers. All operands shall be 8-bit bytes. The Byte
Handling instructions shall use the RR and RX formats. The exact format,
op-code, assembler notation, and diagrammatic representation of each
instruction shall be as shown in Figure VI-10. The operation and resulting
Condition Code shall be as follows:

(1) Load Byte. The Load Byte (LB, LBR) instructions shall cause
the 8-bit second operand to be loaded into the right-most (least
significant) eight bits of the general register specified by Rl. The
left-most (most significant) eight bits of Rl shall be set to zero. The
second operand shall remain unchanged. In the Load Byte Register (LBR)
instruction, the second operdnd shall be taken from the least significant
eight bits (Bits 8:15) of the register specified by R2. The Condition Code
shall remain unchanged.

(2) Store Byte. The Store Byte (STB, STBR) instructions shall
cause the right-most (least significant) 8-bit byte of the first operand to
be stored in the general register or core memory location specified by the
second operand. The first operand shall be unchanged. In the RR form of
this instruction, the left-most byte of R2 (0:7) shall be unchanged, and
the eight bit quantity shall be stored in bits 8:15 of the register
specified by R2. .The Condition Code shall remain unchanged.

(3) Exchange Byte. The Exchange Byte Register (EXBR) instruction
shall cause the two 8-bit bytes of the second operand to be exchanged and
loaded into the general register specified by Rl. The contents of R2 shall
remain unchanged. R1 and R2 may specify the same register. The Condition
Code shall remain unchanged.

Vi-22
(Reverse is Blank)

P\
4 T g

TM(NORAD)-637/027/02

13 Jan 87
LOAD BYTE
LBR R1, R2 A1 (8113)==——R2 (8115)
A1 (017)=———ZERO
0 718 11112 15
93 R1 R2 (RR]
(W R1, A2 (X2) Al (8115)=e— [(A2 + (X2)]
R1 (017) ~—— ZERO
()] 11112 15[16 31
D3 R1 x2 A2 [RX]
STORE BYTE
STBR R1, R2 [R1(8:15) }—=-R2 (8115)
0 718 11]12 18
92 . R1 R2 (RR]
- sTB R1, A2 (X2) (nx(puS)L_*qu’(xzn
0 718 11112 1516 31
D2 R1 x2 A2 (RX]
EXCHANGE BYTE
EXBR R1, R2 R1 (0t7)<——-—R2 (8115)
R1 (8115)e——R2 (017)
0 718 1112 15
94 R1 R2 (RR]
COMPARE LOGICAL BYTE
cLs R1, A2 (X2) R1 (8:15) 1 [A2 + (X2)]
] 718 11112 15116 31
' D4 R1 x2 A2 (RX]

Figure VI-10.

Byte Handling Instructions

VI-23

P x
TM(NORAD)-637/027/02 D _
13 Jan 87

e

(4) Compare Logical Byte. The Compare Logical Byte (CLB)
instruction shall cause the least significant 8-bit byte of the first
operand to be logically compared to the 8-bit second operand. The result
shall be indicated by the setting of the Condition Code PSW (12:15).
Neither operand shall be changed. The resulting Condition Code shall be:

el

| 0 I X I 0 | 0 | First operand equals second operand

I L l X l 0 I 1 l First operand less than second operand
ltlx]1]o])

I 0 I X ' 0 I 1 {}].First operand is greater than second operand
|o|x|1|o

f. Shift/Rotate Instructions. The item shall execute the Shift/Rotate
instructions to provide for arithmetic and logical manipulation of /
information contained in the general registers. Instructions for halfword ’
and fullword operands shall be provided. Bits shifted out of the high or
low order end of a general register shall be passed through the carry bit
position of the Condition Code. After execution of a Shift instruction,
the last bit which was shifted out shall be contained in the Carry
position. The fullword Shift and Rotate instructions shall manipulate a
pair of general registers. The Rl field of these instructions must specify
an even-numbered register. The register specified shall contain the most
significant sixteen bits of the fullword operand. The next sequential
general register shall contain the least significant sixteen bits. A shift
of zero positions shall cause the Condition Code to be set properly with no
alteration to the information contained in the general register. The
Shift/Rotate instructions shall use the SF and RI formats. The exact
format, op-code, assembler notation, and diagrammatic representation of
each instruction shall be as shown in Figures VI-11, -12, -13, -14, -15,
and -16. The operation and resulting Condition Code shall be as follows:

(1) Shift Left Logical. The Shift Left Logical (SLL, SLLS, SLHL)
instructions shall cause the content of the first operand to be shifted
left the number of positions specified by the second operand. High order
bits shifted out of Position O shall be shifted through the carry bit of
the PSW and then lost. Zeros shall be shifted into the low order bit
position. The last bit shifted shall remain in the carry bit. For the
Shift Left Logical Short (SLLS) instruction, the N field (Bits 12-15) of
the instruction shall specify the number of positions the content of Rl is
to be shifted. For the Shift Left Halfword Logical (SLHL) instruction,
only the low order four bits (12-15) of I2+(X2) shall be used for the shift
count. The Shift Left Logical (SLL) instruction shall shift Registers R1
and Rl+l, an even-odd pair. The Rl field of the instruction shall specify
an even register. The shift count shall be specified by the low order five
bits (11-15) of the value I12+(X2). The Carry shall be formed by the output
of Rl. The resulting Condition Code shall be:

Vi-24

‘(:;‘u
TM(NORAD)-637/027/02A
15 Apr 87

SHIFT LEFT LOGICAL
sLLS RI.N
° e 1np2 13

" L} N {sF)
sLHL R1,12(X2)
° ns [RILR 19116 3

co ni x2 (}] LA
(TS Ry, 12 (X2)
] 78 11112 19[1¢ i

ED L} x2 12 (LI}
CHIFT LAPT DOUSLEIWORARD LOGICAL
sLQL R1, 12 {X2)
0 T 11,12 1816 3

(3] ni x2 12 (L1}
SHIFT RIGHT LOGICAL
SRLS RN
0 ne 1112 13

2] LB} N (SF]
SAML R1,12(X2)
] T8 11112 15116)1

cc R1 x2 12 L
sAL TR, 12(X%2)
o 718 111)2 15114 b} |

€cC L3 x2 12 (A1)
SHIFT RIGHT DOUBLE WORD LOGICAL
smRaL A1, 12 (X2)
0 718 11]12 15)16 1

[¥) "t X2 12 (R

Figure VI-11.

Logical Shift Instruction

VI-25

TM(NORAD)-637/027/02A
15 Apr 87

SHIFT LEFT LOGICAL

o 13
(R1)
|
‘ 1
SLLS AND SLHL w
(<)
0 13,1¢ 3
*ay) (R1 1),
‘ sLL
(C)
SHIFT RIGHT LOGICAL
] 15
(R1)
| ;
| ' #
SALS AND SRHL © 4
-] 31
(R1) (R1 +1)
‘ »
r <)
SRL

Figure VI-12.

ROTATE LEFT LOGICAL
ALL R1,12 (X2)

0 7,8 11

Logical Shifts Illustration

(R1],

12 15,16 31
£n R1 x2 12

ARTAE g LoateAL

o 7,8 11,12 135,16 n
A R1 x2 12

(R1]

Figure VI-13.

Logical Rotate Instructions

VI-26

TM(NORAD)-637/027/02A '), X

e

15 Apr 87 ~~ =T

ROTATE LEFT LOGICAL

) 13416 n
(R1) (R e 1)
)|
ALL I
ROTATE RIGHT LOGICAL
0 1% |16 n
(R1}) (R 1)
ALl '

Figure VI-14.

SHIFT LEFT ARITHMETIC
SLHA AL,I12(X2)

Logical Rotate Illustration

] Tie 1in? 15116 n
cr R1 x2 2 1Ry
SLA R1, 12 (X2)
0 e 11,12 15¢16 n
er Ay x2 12 AR}
SHIFT LEPT DOUBLEWORD ARITHMETIC
SLQA A1, 12 (X2)
0 718 1112 18] 1¢ 71
[§] R x2 72 ny
SHIFT RICHT ARITHMETIC
SRHMA R1,12(x2) -
] 7 1mp2 15p6 n
(4 4 Ry x2 12 'LIN]
SRA R1, 12 ({x2)
0 bl 11112 13016 N
(44 L} x2? 12 1R
BMIPT RIGHT DOUSLEWOAD ARITHMETIC
SRQA A1, 12 (Xx2)
o ? 1112 18] 18 31
(1] n X2 12 (AN

Figure VI-15.

Arithmetic Shifr

VI-27

Instructions

TM(NORAD)~637/027/02A
15 Apr 87 .

SHIFT LEFT ARITHMETIC

0 13
s (R1)
|
[|
<) SLHA -
o1 15]1¢ n
s (R1) (R1+1)
= SLA
SHIFT RIGHT ARITHMETIC
o 18
] (R1)
|
|
SRHA (©)
0 1316 n
3 (R1) (R1e1)
1
l. SRA
<)

Figure VI-16.

Arithmetic Shift Illustration

VIi-28

TM(NORAD)-637/027/02
13 Jan 87

o]

] |o|lo]o | Result is zero

I | o | o] 1| Result is not zero

| | 0] 1] 0] Result is not zero

| o | | | | Last bit that was shifted out was a zero
Al

When the first operand is Fixed-Point data, the L flag set indicates a
negative result, the G flag set indicates a positive result.

l Last bit that was shifted out was a one.

(2) sShift Right Logical. The Shift Right Logical (SRL, SRLS,
SRHL) instructions shall cause the content of the first operand to be
shifted right the number of bit positions specified by the second operand.
Low order bits shifted out of Position 15 (for the halfword instruction) or
Position 31 (for the fullword instruction) shall be shifted through the
carry bit of the PSW and then lost. Zeros shall be shifted into
Position 0. The last bit shifted shall remain in the carry bit. For the
Shift Right Logical Short (SRLS) instruction, the N field (Bits 12-15) of
the instruction shall specify the number of positions the content of Rl is
to be shifted. For the Shift Right Halfword Logical instruction, only the
low order four bits (12-15) of I2+(X2) shall be used for the shift count.
The Shift Right Logical (SRL) instruction shall shift Registers Rl and
R1+1l, an even-odd pair. The Rl field of the instruction shall specify an
even register. The shift count shall be specified by the low order five
bits (11-15) of the value I12+(X2). The Carry shall be formed by the output
of Rl1. The resulting Condition Code shall be:

AR Na

| | 0] 0| 0] Result is zero

| o] o] 1| Result 1s not zero

| | o] 1] o] Result is not zero

| o] | | | |Last bit that was shifted out was a zero
I 1 % \ Last bit that was shifted out was a one.

(3) Rotate Left Logical. The Rotate Left Logical (RLL)
instruction shall cause the 32-bit first operand specified by Rl to be
shifted left, end around, the number of positions specified by the low
order five bits of the value I2+(X2). All thirty-two bits of the fullword
shall be shifted. Bits shifted out of Position O shall be shifted into
Position 31. A shift specification of sixteen bits shall interchange the
two halves (Rl, R1+1l) of the first operand. The Rotate Left Logical

VI-29

.....

TM(NORAD)-637/027/02
13 Jan 87 o

instruction shall rotate Registers Rl and Rl1+l, an even-odd pair. The Rl
field of the instruction shall specify an even register. The resulting
Condition Code shall be:

A

| ol 0o | 0| 0] Result is zero

| 0ol o] 1] 0| Result is not zero
l 0 , 0 l 0 | 1 | Result is not zero

(4) Rotate Right Logical. The Rotate Right Logical (RRL)
instruction shall cause the 32-bit first operand specified by Rl to be
shifted right, end around, the number of positions specified by the low
order five bits of the value I2+(X2). All thirty-two bits of the fullword
shall be shifted. Bits shifted out of Position 31 shall be shifted into
Position 0. A shift gpecification of sixteen bits shall interchange the
two halves (Rl, Rl+l) of the first operand. The Rotate Right Logical
instruction rotates Registers Rl and Rl+l, an even-odd pair. The Rl field
of the instructions shall specify an even register. The resulting
Condition Code shall be:

A

| 0] 0| 0] 0] Result is zero

| o | o | 1 | 0| Result is not zero
l 0 I 0 l 0 l 1 | Result is not zero

(5) Shift Left Arithmetic. The Shift Left Arithmetic (SLA, SLHA)
instruction shall cause the content of the first operand to be shifted left
the number of bit positions specified by the second operand. The Sign Bit
shall be unchanged. High order bits shifted out of Position 1 shall be
shifted through the carry bit of the PSW and then lost. Zeros shall be
shifted into the low order bit position. For the Shift Left Halfword
Arithmetic (SLHA) instruction, the shift count shall be specified by the
low order four bits (12-15) of the value of I2+(X2). The Shift Left
Arithmetic (SLA) instruction shall shift Registers Rl and R1+l, an even-odd
pair. Rl shall specify an even register. The shift count shall be

specified by the low order five bits (11-15) of the value of I2+(X2). The
resulting Condition Code shall be:

VI-30

| ey
’ ¥
\

A
it

TM(NORAD)-637/027/02A
15 Apr 87

Last bit that was shifted out was a one.

AN

| |o|o| 0| Result is zero

| | o] o | 1 | Result is less than zero A

| | o | 1] 0] Result is greater than zero } i
| o I | | | Last bit that was shifted out was a zero
.

(6) sShift Right Arithmetic. The Shift Right Arithmetic (SRA,
SRHA) instruction shall cause the content of the first operand to be
shifted right the number of bit positions specified by the second operand.
The Sign Bit (Bit O of Rl) shall be unchanged and shall be shifted right
into Bit 1; therefore, Bit O shall be propagated right as many positions as
specified by the second operand. Low order bits of the first operand shall
be shifted through the carry bit of the PSW and then lost. For the Shift
Right Halfword Arithmetic (SRHA) instruction, the shift count shall be
specified by the low order four bits (12-15) of the value of I2+(X2). The
Shift Right Arithmetic (SRA) instruction, shall shift Registers Rl and
R1+1l, an even-odd pair. Rl shall specify an even register. The shift
count shall be specified by the low order five bits (11-15) of the value of
I2+(X2). The Carry shall be formed by the output of Rl+l instead of R1.
The resulting Condition Code shall be:

e fe]r]

| | ojlo]o | Result 1is zero

| | o | o | 1| Result is less than zero

| | o | i | o | Result is greater than zero

| 0| | | | |Last bit that was shifted out was a zero
| 1 ' , | I Last bit that was shifted out was a one.

VI-31

TM(NORAD)-637/027/02A
15 Apr 87

(7) Shift Left Double Word Logical Instruction. The shift left
double word logical (SLQL) instruction causes the content of the first
operand to be shifted left the number of positions specified by the second
operand. High order bits shifted out of position 0 are shifted through the
carry bit of the PSW and then lost. Zeros are shifted into the low order
bit position. The last bit shifted remains in the carry bit. The Rl field
of the instruction specifies an even register. The shift count is
specified by the low order six bits (10 thru 15) of the value I2 + (X2).
The resulting Condition Code shall be:

el

| x | 0| 0] 0| Result is zero

| x | 0] o | 1 l Result is less than zero

| x | 0] 1] 0] Result is greater than zero

| o] x| x | X | Last bit that was shifted out was a zero
1 1 I X % X | X ‘ Last bit that was shifted out was a one.

(8) sShift Right Double Word Logical Instruction. The shift right
double word logical (SRQL) instruction causes the content of the first
operand to be shifted right the number of positions specified by the second
operand. Low order bits shifted out of position 63 are shifted through the
carry bit of the PSW and then lost. Zeros are shifted into position O.

The last bit shifted remains in the carry bit. The Rl field of the
instruction specifies an even register. The shift count is specified by
the low order six bits (10 thru 15) of the value I2 + (X2). The resulting
Condition Code shall be:

clv]|e|uL|
[[
| x] o | oo | Result is zero
| x| oo | 1 | Result is less than zero
| x]o|1]o| Result is greater than zero
| 0| x | x | x | Last bit that was shifted out was a zero
' 1 I X l X I X

l Last bit that was shifted out was a one.

(9) Shift Left Double Word Arithmetic Instruction. The shift left
double word arithmetic (SLQA) instruction causes the content of the first
operand to be shifted left the number of bit positions specified by the
second operand. High order bits shifted out of position 1 are shifted
through the carry bit of the PSW and then lost. Zeros are shifted into the
low order bit position. The Rl field of the instruction specifies an even
register. The shift count is specified by the low order six bits (10 thru
15) of the value I2 + (X2). The resulting Condition Code shall be:

VIi-31.1

.....

f(

N7
sn
X

TM(NORAD)-637/027/02A "=y

15 Apr 87

A

| % | o | o] o] Result is zero

| x| o | o] 1] Result is less than zero

| X | 0| 1] 0] Result is greater than zero

| o | x | x | x | Last bit that was shifted out was a zero~ ~
l 1 | X ' X ‘ X l Last bit that was shifted out was a one.

(10) Shift Right Double Word Arithmetic Instruction. The shift
right double word arithmetic (SRQA) instruction causes the content of the
first operand to be shifted right the number of bit positions specified by
the second operand. The sign bit (bit 0) of Rl remains unchanged and is
shifted right into bit 1; therefore, bit O is propagated right as many
positions as specified by the second operand. Low order bits of the first
operand are shifted through the carry bit of the PSW and then lost. The R1
field of the instruction specifies an even register. The shift count is
specified by the low order six bits (10 thru 15) of the value I2 + (X2).
The carry is formed by the output of Rl + 3. The resulting Condition Code
shall be:

el

| x | o|o]| o] Result is zero

| x | o | o | 1| Result is less than zero

| X | 0| 1] 0| Result is greater than zero

| o | x | x | X | Last bit that was shifted out was a zero
l 1 , X I X | X l Last bit that was shifted out was a one.

g. Branch Instructions. The item shall execute the Branch
Instructions to provide programmed decisions for entry to subprograms, as
well as testing the result of arithmetic, logical, or indexing operations.
Many processor operations result in setting of the Condition Code in the
PSW. The Branch on Condition instructions shall implement the testing of
the Condition Code through the use of a mask field contained in the
ingstruction itself (ML field). The Branch instructions shall use the RX,
RR, and SF formats. The exact format, op-code, assembler notation, and
diagrammatic representations of each instruction shall be as shown in
Figures VI-17, -18, and -19. The operation and resulting Condition Code
shall be as follows:

VI—31 02

TM(NORAD)-637/027/02A
15 Apr 87

BRANCH ON TRUE CONDITION

8TFS M1,0 TRUE, [PSW (18131) }——— [PSW (16:31)] ¢ 2D
FALSE: (PSW (16131) J=e—— (PSW {16131)] ¢ 2
° e 1112 15
\,/ 2 2| M1 o (sr)
sTES M1, D TAUE; (PSW (16131)]e——(PSW (16:31)] -20
‘FALSE: [PSW (l‘lll)l*——ipsw (16:131)) +2
[718 1112 15
S 0 AP M1 o | (s71
STCR M1, R2 TRUE: [PSW (16131)]<e— (R2)
PALSE: [PSW (16131)]=—— (PSW (16:131)] +2
o 7,8 11112 15
J r 02 M1 A2 J (RRA)
wTC M1, A2 (X2 TRUE: [PSW (16131)]~e— A2 & (X2)
WSS FALSE: (PSW (16131)]=e— [PSW (16131)}] +4
0 718 + 11g12 15116 n
J a2 M1 x2 A2 (RX]
BFEs M1, D FALSE: (PSW (16131) j=—(PSW (16:31)] - 20
TRUE: (PSW (16131) Ja— (PSW (16131)] ¢ 2
0 718 1112 13
J 22 M1 o (s¥}
BRANCH ON FALSE CONDITION
8FPS M1,0 FALSE (PSW (16131))-s——— [PSW (16131)] +20
TRUE: [PSW (16131)]=~e——— (PSW (16131)] +2
0 718 11112 15
/ [23 M1 o s
BFCR M1, R2 FALSE: ([PSW (16131)])e— (R2)
TRUE [PSW (16131)]e——— [PSW (16131)] 42
o 718 1112 13
J 03 M1 R2 (RR)
8FC M1, A2(X2) FALSE: [PSW (1613])]=s— A2 + (X2)
TRUE: [PSW (16111))~e——— [PSW (16111)] +4
/ 0 718 11112 15(16 11
~ [43 M1 x2 A2 |(RX|

Figure VI-17.

Branch on True/False Instructions

VI-32

'uzo'
: X

(AN
—

TM(NORAD)-637/027/02 -~ ~7*"

13 Jan 87
BRANCH ON INDEX
BXH A1, A2 (X2) (R1)~= (R1) + ‘:ll:;,)
R
" fn{} '>‘(m +2), THEN (PSW (16131)] =—A2 + (X2)
: " (R1)< (R1 + 2), THEN [PSW (16:31)] ~—(PSW (16:31)] +4
(] 778 11112 1516 31
co R1 x2 A2 (RX]
BXLE R1, A2 (X2) uu)a—%:}; 0((:11)‘ -
1
. A1 ¢ 2), THEN (PSW (16131)] A2 * (X2)
" ANSIRI S 3} THEN (PsW (16131)] =—(PSW (16:31)] +4
o 718 1mp2 asps 3
c1 R1 x2 A2 (RX)
7
Figure VI-18. Branch on Index Instructions
BRANCH AND LINK
BALR R1, R2 (R1)}e———(PSW (16:31)] +2
[PSW(16131) <= (R2)
0 718 1112 15
01 R1 R2 [RR]
BAL R1, A2(X2) (R1) =t [PSW (16:131)] 44
(PSW (16131)) s A2 + (X2)
0 718 1112 1516 n
41 A1 x2 . A2 (RX]

Figure VI-19. Branch and Link Instructions

VIi-33

TM(NORAD)-637/027/02 ! e <
13 Jan 87 e

bl

(1) Branch on True. The Branch on True (BTBS, BTFS, BTCR, BTC)
instructions shall cause the Condition Code field of the PSW (12:15) to be
tested for the condition specified by the Mask Field (Ml). If any of the
conditions tested are found to be true, a Branch shall be executed to the
16-bit address specified by the second operand. If none of the conditions
tested are found to be true, the next sequential instruction shall be
executed. A logical AND shall be performed between each bit in the
Condition Code and ist corresponding bit in the M1 field. If any resultant
bit is a one, the Branch shall occur. The Condition Code [PSW (12:15)]
shall not be changed. For example, if the Condition Code is 1010 and the
Ml field is 1000, the Branch occurs with Branch on True instructions. The
Branch on True Backward Short (BTBS) instruction shall cause a Branch to an
address relative to the present Location Counter when the tested condition
i1s true. The displacement shall be specified by the N field (Bits 12-15)
of the instruction. The N field (times two) shall be subtracted from the
present Location Counter to generate the address of the next instruction.
The Branch on True Forward Short (BTFS) instruction shall cause a Branch to
an address relative to the present Location Counter when the tested
condition is true. The displacement shall be specified by the N field
(Bits 12 15) of the instruction. The N field (times two) shall be added to
the present Location Counter to generate the address of the next
instruction. The Short Branch instructions (e.g., BTBS) are appropriate J
for Branches which specify small displacements from the present Location
Counter (i.e., in senge status loops used for program controlled I/0).

(2) Branch on False. The Branch on False (BFBS, BFFS, BFCF, BFC)
instructions shall cause the Condition Code field of the PSW (12:15) to be
tested for the condition specified by the mask field (Ml). If all
conditions tested are found to be false, a Branch shall be executed to the
16-bit address specified by the second operand. If any of the conditions
tested are found to be true, the next sequential instruction shall be
executed. A logical AND shall be performed between each bit in the
Condition Code and its corresponding bit in the M1 field. 1If any resultant
bit 1s a one, the Branch shall not occur. The Condition Code [PSW (12:15)]
shall not be change. For example, if the Condition Code is 1010 and the Ml
field is 1100, the Branch does not occur with the Branch on False
instruction. The Branch on False Backward Short (BFBS) instruction shall
cause a Branch to an address relative to the present Location Counter shen
the tested condition is false. The displacement shall be specified by the
Nfield (Bits 12-15) of the instruction. The N field (times two) shall be
subtracted from the present Location Counter to generate the address of the
next instruction. The Branch on False Forward Short (BFFS) instruction
shall cause a Branch to an address relative to the present Location Counter
when the tested condition is false. The displacement shall be specified by
the N field (Bits 12-15) of the instruction. 1The N field (times two)
shall be added to the present Location Counter to generate the address of

the next instruction. Branck on False Condition with a mask of 0 shall be
an Unconditional Branch.

VI-34

TM(NORAD)~637/027/02 -rre:

13 Jan 87

(3) Branch on Index. The Branch on Index High (BLH) instruction
and the Branch on Index Low or Equal (BXLE) instruction shall cause the
index (R1) to be incremented by Rl+l, and logically compared to the index
limit (R14+2). Prior to execution of this instruction, the general register
specified by the first operand (Rl) shall contain a 16-bit starting value,
R1+1l shall contain a 16-bit increment value, and R1+2 shall contain a
16-bit comparand (limit or final value). All values shall be signed. For
the Branch on Index High instruction, the contents of R1+l should be
negative. As long as the index (Rl) is greater than the limit (R1+2), the
16-bit address specified by the second operand shall be transferred to the
instruction address field of the PSW (16:31). The next instruction
executed shall be accessed from the location specified by the new
instruction address. When the count 1s not greater than the index limit,
the instruction following Branch on Index High shall be executed. For the
Branch on Index Low or Equal instruction, the contents of Rl+l should be
positive. As long as the index (Rl) 1s equal to or less than the limit
(R1+2), the 16-bit address specified by the second operand shall be
transferred to the instruction address field of the PSW (16:31). The next
instruction executed shall be accessed from the location specified by the
new instruction address. When the count is greater than the limit, the
instruction following Branch on Index Low shall be executed. The Branch on
Index High and the Branch on Index Low instructions are appropriate for
raped loop control, particularly when one or more of the instructions in
the loop is indexed. General Register 13 is the maximum specification for
the Rl field. The Condition Code shall remain unchanged.

(4) Branch and Link. The Branch and Link (BAL and BALR)
instructions shall cause the address of the next sequential instruction to
be saved in the general register specified by the first operand (Rl), and
an Unconditional Branch to be executed to the 16-bit address specified by
the second operand. the effective second operand shall be derived before
the contents of Register Rl are changed. The Branch and Link instruction
may be used for entry into subprograms. It differs from the Branch
Unconditional instructions in that the incremented Location Counter value
is preserved in a specified general register to be used as the subprogram's
exit address. Exit from the subprogram is effected by a Branch
Unconditional instruction through the general register in which the exit
address has been maintained. The effective second operand 1is derived

before the contents of Rl are changed. The Condition Code shall remain
unchanged.

h. Floating-Point Instructions. The item shall execute the
Floating-Point instructions to provide for loading, storing, adding,
subtracting, multiplying, dividing, and comparing of floating-point
operands. In order to produce correct normalized results, the Arithmetic
instructions require normalized floating-point operands. If the operands
are not normalized (with the exception of the floating-point load
instructions), the results of the instructions are undefined. The
Floating-Point instructions shall normalize an unnormalized floating-point
number. The Floating-Point instructions shall manipulate 32-bit operands.
The Rl and R2 fields of the Floating-Point instructions shall specify
floating-point registers. These floating-point registers shall be
reserved-memory locations.

VI-35

TM(NORAD)-637/027/02
13 Jan 87

The Floating-Point instructions shall use the RR and RX formats. The exact
format, op-code, assembler notation, and diagrammatic representation of
each instruction shall be as shown in Figures VI-20 and -21. The operation
and resulting Condition Code shall be as follows:

(1) Floating-Point Load. The Floating-Point Load (LE and LER)
instructions shall cause the floating-point second operand to be normalized
and placed in the floating-point register Rl. During normalization, the
fraction shall be shifted left four bits at a time until the most
significant hexidecimal digit is not zero. The exponent shall be
decremented by one for each shift required. Zeros shall be shifted into
the least significant bit positions of the fraction. If the fraction is
zero, a true zero shall be generated. The second operand shall remain
unchanged. If normalization causes exponent underflow, the result shall be
set to a true zero, and the Ovérflow (V) flag is set. In the event of
exponent underflow, a Floating-Point Arithmetic Fault Interrupt shall occur
(1f enabled by Bit 5 of the PSW). The resulting Condition Code shall be:

|c|vlc\1.|

| l -
| x |]o]o]|] o] zero

| x| o | o | 1| Less than zero

| x]o|1]o0 i Greater than zero

l X|1 \ 0 | 0 ‘ Exponent underflow

(2) Floating-Point Store. The Floating-Point Store (STE)
instruction shall cause the floating-point first operand to be placed in
the memory location specified by A2+(X2). The first operand shall remain
unchanged. The resulting Condition Code shall remain unchanged.

(3) Floating-Point Add. The Floating-Point Add (AE and AER)
instructions shall cause the following to occur. The exponents of the two
operands shall be compared. If the exponents differ, the fraction with the
smaller exponent shall be shifted right four bits at a time, and its
exponent shall be incremented by one for each shift intil the two exponents
agree. The fractions shall then be added algebraically. If a carry
results, the exponent of the sum shall be incremented by one; the fraction
shall be shifted right four bits; and the carry shall be shifted into the
most gsignificant hex digit. If an exponent overflow results, the exponent
and fraction of the result shall be set to the maximum value, and the
Overflow (V) flag shall be set. The sign of the result shall not be
affected by the overflow. If no carry results from the addition of the
fractions, the sum shall be normalized. During normalization, the fraction
shall be shifted left four bits at a time until the most significant hex
digit is not zero. The exponent shall be decremented by one for each shift
required. Zeros shall be shifted into the least significant bit positions
of the fraction. If normalization causes exponent underflow, a true zero
shall be generated, and the Overflow (V) flag is set. If a zero sum is

VI-36

e Lre

|

)
¥ % o 2
TM(NORAD)-637/027/02 N
13 Jan 87

FLOATING-POINT LOAD .
LER R1,R2 (R1) e (R2)
° 7|8 11112 15

as R1 R2 (RR]
LE A1, A2 (X2) (R1)ct [A2 ¢ (X2)])
0 78 11112 15(16 3

.8 R1 x2 A2 (RX])
FLOATING-POINT STORE
sTE R1, A2(X2) |~—-— (A2 + {X2)] =—(R1)
0 ns 11112 C 15116 31

60 R1 x2 A2 (RX]
FLOATING-POINT ADD ; -
AER R1, R2 {R1}e— (R1) + (R2)
0 s 11112 15

2A R1 R2 (RR])
AE R1, A2(X2) (R1}e—{R1) + [A2 +(X2))
o 718 11112 15116 . I

A R1 X2 A2 (RX]
FLOATING-POINT SUBTRACT
SER R1, R2 (R1)=—(R1) = (R2)
o ns 11112 C 18

28 R1 R2 {RR]
SE R1,A2(X2) (R1}e——: (R1) = [A2 + (X2)]
o 78 1112 15116 31

é8 R1 x2 A2 (RX]

Figure VI-20. Floating-Point Load/Store/Add/Subtract Instructions

VI-37

l LLV0
A\ \{
TM(NORAD)-637/027/02

DA
.

13 Jan 87 AR

FLOATING-POINT COMPARE
CER R1, R2 (R1) 1 (R2)
9 218 1112 13
29 R1 R2 (RR)
ce R1, A2(X2) * (R1) 1 [A2 + (X2)] . :
9 71s 112 15116 3}
: 1) R1 x2 A2 (AX]
FLOATING-POINT MULTIPLY .
»'ER R1, R2 (R1)=—(R1) * (R2) -
0 7|e 112 13 ;
2c R1 R2 (RR)
mME A1, A2 (X2) (R1)~——{R1) * [A2 + (X2)] ‘
Q 718 11112 1518 k]
ec . R1 x2 ; A2 (RX]

FLOATING-POINT DIVIDE
DER

R1, R2 (R1)}=e—q{R1)/(R2)
9 pal | 11112 13
20 R1 R2 (RR]
o& R1, A2 (X2) (R1)e——R1)/[A2 + (X2)]
9 718 11112 15116 31
[1s] R1 x2 A2 (RX]

Figure VI-21. Floating-Point Compare/Multiply/Divide Instructions

VI-38

TM(NORAD)-637/027/02
13 Jan 87

generated by adding equal fractions with opposite signs, a true zero shall
be generated. In the event of exponent overflow or underflow, a
Floating-Point Arithmetic Fault Interrupt shall occur (if enabled by Bit 5
of the PSW). The resulting Condition Code shall be:

A

| x |]o] o] o] Sumis zero

| x| oo | 1] Sum is less than zero

| x| o] 1 | o Sum is greater than zero

| x] 1| 0] 1| Exponent Overflow (negative)
| x| 1] 1] 0] Exponent Overflow (positive)
‘ x| 1 l 0 I 0 I Exponent underflow

|

(4) Floating-Point Subtract. The Floating-Point Subtract (SE and
SER) instructions shall cause the following to occur. The exponents of the
two operands are compared. If the exponents differ, the fraction with the
smaller exponent is shifted right hexadecimally four bits at a time, and
its exponent is incremented by one for each hexadecimal shift until the two
exponents agree. The fractions are then subtracted algebraically. 1If a
Carry results, the exponent of the difference is incremented by one, and
the fraction (result) is shifted right one hexadecimal position (four
bits). The Carry is shifted into the most significant hexadecimal digit of
the fraction. If an exponent overflow occurs, the exponent and fraction of
the result are set to all ones, and the Overflow flag is set. The sign of
the result is not affected by the overflow. If no Carry results from the
subtraction of fractions, the difference is normalized by shifting the
fraction left hexadecimally four bits at a time until the most significant
hexadecimal digit is not zero. The exponent is decremented by one for each
hexadecimal shift required. Zeros are shifted into the least significant
hexadecimal digit of the fraction. If the normalization causes exponent
underflow, the entire floating-point result is set to zero, and the
Overflow flag is set. In the event of exponent overflow or underflow, a
Floating-Point Arithmetic Fault Interrupt shall occur (if enabled by Bit 5
of the PSW). The resulting Condition Code shall be:

el

| x|o|o]| o] Dif ference is zero

I X | 0 | 0|1 I Difference 1is less than zero

| X | 0] 1] 0| Difference is greater than zero
| X | 1| 0| 1] Exponent Overflow (negative)

| x| 1] 1] 0| Exponent Overflow (positive)

’ X | 1 | 0 | 0 ‘ Exponent underflow

VI-39

‘ ¥
TM(NORAD)-637/027/02 i

13 Jan 87 =

~
1
ty
o
|
4

(5) Floating-Point Compare. The Floating-Point Compare (CE and
CER) instructions shall cause the first operand to be compared to the
second operand. The comparison shall be algegraic, taking into account the
sign, fraction, and exponent of each operand. Both operands shall remain
~ unchanged. The result shall be indicated by the setting of the Condition
Code. The resulting Condition Code shall be:

MM

| 0 | X | 0 | 0 I Operands equal

| 1] X] 0| 1] First less than second

I 0| X |1 | 0 | First'greater than second

(6) Floating-Point Multiply. The Floating-Point Multiply (ME and
MER) instructions shall cause the following to occur. The exponents of the
two operands are added to produce the exponent of the result. The
resultant exponent is readjusted to excess 64 notation. If an exponent
overflow occurs, the exponent and fraction of the product are set to ones,
and the Overflow flag is set. The sign of the product is determined by the
rules of algebra. If an exponent underflow occurs, the entire
floating-point result.is set to zero, and the Overflow flag is set. 1In
either event, the Floating-Point Arithmetic Fault shall occur (if enabled
by Bit 5 of the PSW). If an exponent overflow or underflow does not occur,
the multiplication takes place. If the product is zero, the entire
floating-point result is zero. If the result is not zero, normalization
may occur. During nomralization, the fraction is shifted left
hexadecimally four bits at a time until the most significant hexadecimal
digit is not zero. The exponent of the result is decremented by one for
each hexadecimal shift relquired. After normalization, the product is
roundet to 24 bits. If normalization causes the exponent to underflow, the
entire floating-point result is set to zero and the Overflow flag is set.
The sum of the exponents of the two operands must be less than 64, or
overflow occurs, producing the maximum gossible value as a groduct (i.e.,
the multiplication 1/2x1663%1 = 1/2x1663%1/16x161 = 1/32x1664 causes an
overflow, rather than the result 1/2x1663), The resulting Condition Code
shall be:

oLl

| | 0] 0] Product is zero

| | | o] 1 | Product is less than zero

| | | 1 | o I Product is greater than zero
| | 1 | X | x | Exponent Overflow

| I 1 | 0 | 0 | Exponent underflow

VI-40

TM(NORAD)-637/027 /02 Sfenss SN
13 Jan 87

(7) Floating-Point Divide. The Floating-Point Divide (DE and DER)
instructions shall cause the following to occur. The exponents of the two
operands are subtracted to produce the exponent of the result. The
resultant exponent is readjusted to excess 64 notation. If an exponent
overflow occurs, the exponent and fraction of the quotient are set to all
ones, and the Overflow flag is set. The sign of the quotient is determined
by the rules of algebra. If an exponent overflow occurs, the entire
floating-point result is set to zero, and the Overflow flag is set. If the
divisor (the second operand) is zero, the operands are unchanged. In the
event of exponent overflow, underflow, or division by zero, the
Floating-Point Arithmetic Fault Interrupt shall occur (if enabled by Bit 5
of the PSW). If the exponent overflow or underflow does not occur, and if
the divisor is not zero, the second operand is divided into the first
operand. Division continues urtil the quotient is normalized, adjusting
the exponent for each additional division required. If an exponent
underflow occurs, the entire floating-point result is set to zero, and the
Overflow flag is set. No remainder is returned to the user. The quotient
is rounded to compensate for the loss of the remainder. Division by zero,
overflow, or underflow cause a Floating-Point Arithmetic Fault Interrupt
(Lf enabled by Bit 5 of the PSW). Inspection of the Condition Code of the
01d PSW indicates the actual cause of the interrupt. If the Carry flag is ,
set, then the divisor was zero. If the Carry flag is not set, then either ’
overflow or underflow caused the interrupt. In this case, if the Greater
than (G) or Less than (L) flag is set, the interrupt was caused by an
overflow. If the G and L flag is reset, the interrupt was caused by an
underflow. The difference of the exponents of the two operands must be
less than 64, or overflow occurs, producing the maximum possible values as
a quotient, even when normalization of the computed mantissa would bring
the resultant exponent within range. The resulting Condition Code shall
be:

0] o0 Quotient is zero

0 1 Quotient 1s less than zero

1 0 Quotient is greater than zero
i l1l=[

Exponent Overflow
11X)1
1 0 0 Exponent underflow
1 1 0O Divisor Equal to zero

VI-41

TM(NORAD)-637/027/02
13 Jan 87

i. System Control Instructions. The item shall execute the System
Control instructions to provide a means for the program to set the Program
Status Word, swap PSWs, trigger special interrupt handling, and communicate
with a supervisor program. Two instructions shall be provided to control
the memory bank switching scheme in the item. These two instructions shall
be included to extend the addressing range from 32,768 halfwords to 131,072
halfwords. Some of the System Control instructions are privileged and may
be executed only with the processor in the Supervisor Mode (i.e., Bit 7 of
the PSW reset). Any attempt to execute these instructions in the Protect
Mode results in an Illegal Instruction Interrupt. The System Control
instructions shall use the RR, SF, RX, and RI formats. The exact [ormat,
op-code, assembler notation, and diagrammatic representation of each
ingtruction shall be as shown in Figure VI-22. The operation and resulting
Condition Code shall be as follows: -

(1) Load Program Status Word. The Load Program Status Word (LPSW)
instruction shall cause a 32-bit operand to be loaded into the Current
Program Status Word. The second operand shall remain unchanged. The
resulting Condition Code shall be determined by the PSW loaded by the
instruction. This instruction shall be privileged. The Rl field of a Load
PSW instruction shall contain a zero.

(2) Exchange Operand Bank Address. The Exchange Operand Bank
Address (EPOR) instruction shall cause the PSW (10:11) to be modified by
the bits in the register specified by Rl. The bits shall be exchanged
between Rl and the PSW. R2 shall be ignored. The Condition Code shall
remain unchanged.

(3) Exchange Program A<dress. The Exchange Program Address (EPPR)
instruction shall cause the PSW (8:11 and 15:31) to be modified by the bits
in the registers specified by Rl and Rl+l. The former value of the PSW
(0:31) shall be stored in Rl and Rl+l. This instruction is useful in
interbank transfers. R2 shall be ignored. The Condition Code shall remain
unchanged.

(4) Exchange Program Status. The Exchange Program Status (EPSR)
instruction shall cause the Current Program Status [PSW (0:15)] to be
stored in the register specified by Rl. The content of R2 shall then
become the Current Program Status [PSW (0:15)]. Note that if R1=R2, this
results in the Program Status being copied into Rl, but otherwise remaining
unchanged. This instruction 1s useful for capturing the running program
status, enabling or disabling interrupts, or loading the Condition Code
with a specified value. This instruction shall be privileged. The
Condition Code shall be defined by the New PSW.

(5) Simulate Interrupt. The Simulate Interrupt (SINT) instruction
shall cause the least significant eight bits of the second operand
[I2+(X2)], to be presented to the Interrupt Handler (software) as a device
number. The device number shall index into the Service Pointer Table at
X'O0DO' and result in either an Immediate Interrupt or an I/0 Channel
operation. This instruction shall be privileged. The Rl field of the
Simulate Interrupt instruction shall contain a zero.

VI-42

XLLYO|
7 4

PARN
P,
At e,

e’

TM(NORAD)-637/027/02 o

13 Jan 87
LOAD PROGRAM STATUS WORD
LrsSwW A2(X2) [PSW (0131)] = [A2 + (X2)]
o 8 11,12 15,16 11
c2 (] x2 A2 [Rx|
-
EXCHANGE OPERAND BANK ADDRESS
EPOR A1, R2 (PSW (10111)] ~——— (R1 (10:11})
{R1 (00115)] e~ FORMER (PSW (0:15)]
0 1112 15
2E R1 R2 [RR]
EXCHANGE PROGRAM ADORESS
EPPR R1, R2 (PSW (8111)] ~—— R1 (8111)
(PSW (1613]1))~——R1 ¢ 1
Al-e—— FORMER [PSW (0113)]
R1 ¢ 1-e=FORMER (PSW (16131)] P
0 11 (12 15
2r R1 R2 (RR]
EXCHANGE PROGRAM STATUS
EPSR A1, R2 {(PSW (0115)) —~——a=R1 ;i
(PSW (0115) e—————R2
0 11 ,12 15
’s R1 R2 (RR].
SIMULATE INTERRUPT
SINT 12 (X2)
o 11,12 15116 an
€2 0 X2 12 (R1)
SUPERVISOR CALL
svec R1, 12 (X2) (X'0094") o 12 + (X2)
(X'0096') ~o———eeee [PSW (0131)])
{X'009A ") ————————e= [PSW (0115)]
(X'C09C* + 2 * R1)—e{PSW (16:31)]
0 11112 15116 31

El

R1

x2

Figure VI-22.

System Control Instructiouns

VI-43

[R1]

TM(NORAD)-637/027 /02 L
13 Jan 87 o

(6) Supervisor Call. The Supervisor Call (SVC) instruction shall
provide a means for initiating software functions in the Executive program.
The second operand address [A2+(X2)] shall serve as a pointer to the memory
location of the parameters the Executive program will need to complete the
function specified. The value [A2+(X2)] shall be stored in memory location
X'0094'. The Current PSW shall be stored in the fullword memory location
at X'0096'. Memory location X'009A' shall contain the New Program Status
value. Memory locations X'0098! through X'0OO0BB' shall contain sixteen new
Location Counter values, one for each type of Supervisor call. The type of
Supervisor call shall be specified in the Rl field of the instruction.
Sixteen different calls shall be provided for. Return from the Executive
program shall be made by executing a Load PSW instruction specifying the
stored "0ld"” PSW in location X'0096'. This instruction provides a
convenient means of switching from the Protect Mode to the Supervisor Mode.
Return to the Protect Mode is accomplished by a Load PSW or Exchange
Program Status instruction. The resulting Condition Code shall be defined
by the New PSW.

j. Input/Output Instructions. The item shall execute the Input/Qutput
instructions to provide for the transfer of data between the Processor and
the peripheral devices on the I/0 Mux Bus. The Block I/0 instructions
shall provide for the transfer of blocks of data between the I/0 device and
memory. All of the instructions described in this section are privileged
and, 1f executed with the processor in Protect Mode (PSW Bit 7 set), result
in an Illegal Instruction Interrupt. Following I/0 instructions, the
V flag in the Condition Code shall indicate an instruction time-out. That
is, due to an improper device response (either the addressed device does
not exist, or it did not respond correctly), the specified I/0 operation
was not performed. An instruction time-out shall occur thirty microseconds
after initiation of the I/0 instruction if a synchronize signal has not
been received in response to issuing a device address. A time-out shall
cause the V flag to be set and the next instruction to be executed.
Following Sense Status or Acknowledge Interrupt instructions, the Condition
Code (CVGL) also reflects Bits four through seven of the device status.
With standard Interdata device controllers, Bit five of the status byte
(which is reflected in the V flag in the Condition Code) is defined as
Examine Status. This means that the status byte should be examined.
Therefore, following Sense Status and Acknowledge Interrupt instructions
the occurrence of the V flag, with status Bits zero through three equal to
zero, indicates instruction time-out. The I/0 instructions shall use the
RR and the RX formats. The exact format, op-code, assembler notation, and
diagrammatic representation of each instruction shall be as shown in

Figures VI-23, -24, -25, and -26. The operation and resulting Condition
Code shall be as follows:

(1) Acknowledge Interrupt. The Acknowledge Interrupt (AI and AIR)
instructions shall cause the address of the interrupting device to replace
the content of the 16-bit general register specified by the first operand
(Rl). The 8-bit device status byte shall replace the content of the
location specified by the second operand. The Condition Code shall be set
equal to the right-most four bits in the device status byte. The device

interrupt condition shall then be cleared. These instructions shall be
privileged. The resulting Condition Code when the addressed device is a
standard Interdata controller shall be:

VI-44

TM(NORAD)-637/027/02

13 Jan 87
ACKNOWLEDGE INTERRUPT
AIR R1, R2 (R1 (8115)) =—— DEVICE ADDRESS
(R1 {(0:7)] —=—— ZERO
{R2 (8115)] =—— STATUS BYTE
(R2 (017)]) ——— ZERO
(PSW (12113)] =— STATUS BYTE (417)
° 718 11112 19
Y R1 R2 (RR}
Al R1,A2(X2) {nx (8115)] <—— DEVICE ADDRESS
R1(017)] - ZERO
(A2 + (X2)] =—= STATUS BYTE
(PSW (12115)) =— STATUS BYTE (#17)
o 7] e 112 1sps P!
DF R1 x2 A2 (RX]
SENSE STATUS
S3R A1, R2 {R2 ((8115)] =— STATUS BYTE
(R2 (017)) =— ZERO
| (PSW (12113)) ~— STATUS BYTE (417)
L s ‘7|8 11112 15
90 R1 R2 (RR}
— ss A1, A2(X2) [A2 + (X2)]=—— STATUS BYTE
{PSW (12115)) =— STATUS BYTE (417)
0 7|8 1112 151 16 : a
oo A1 x2 A2 (AX)
OUTPUT COMMAND
OCR R1, R2 DEVICE = [R2 (8115)] .
0 7] 11112 13
9E R1 R2 (RR]
oc R1, A2(X2) DEVICE <— [A2 + (X2)] - -
0 7|8 11112 15116 3
oe R1 X2 A2 (RX]

Figure VI-23. Acknowledge/Status/Command Instructions

VI-45

TM(NORAD)-637/027/02

13 Jan 87
READ DATA
ROR R1, A2 (R2 (8115)] =—— DATABYTE
{R2 (017)) ~—— ZERO
) 718 1922 18
” R1 R2 [RR]

RD R1, A (X2)

(A2 + (X2)] e DATA BYTE

° 718 1112 1516 31
os R1 x2 A2
WRITE DATA . [R2(8115)]——aDEVICE -
WDR R1, R2 .
° 7 1112 15
9A R1 R2 {RR]
A2 # (X2)) ———=a= DEVICE
wo R1,A (X2) IAZ £ (X1
0 718 1112 15116 n
DA R1 x2 A2
AUTOLOAD Yo .
AL 2. (x'.ot‘ ",_aw
3. Nt N +1
4. IF A2 + (X2) < X'80° + n, INSTRUCTION IS FINISHED, OTHERWIDE RETURN TO
STEP 2
° 718 11412 1516 31
os R1 X2 A2

Figure VI-24. Byte I/0 Instructions

VI-46

(RX]

(RX]

[RX]

READ HALFWORD

TM(NORAD)-637/027/02
13 Jan 87

RHR R1; R2 A2 (017)] ~—— FIRST DATA BYTE
. SRR B AT ArA By TE | 8-8IT ORIENTED DEVICE CONTROLLER
R2 (0115)] v HALFWORD OF DATA 16-81T ORIENTED DEVICE CONTROLLER
) 78 11112 13
” R1 R2 (RR]
RH R1, A2 (X2 A2 + (X2)]~e—— FIRST OATA BYTE 8.81T OR
+ A2 (X2) At s B I =—StconD DATA BYTE l T ORIENTED DEVICE CONTROLLER
A2+ (X2)]——HALFWORD OF DATA ;4 5|7 ORIENTED DEVICE CONTROLLER
0 718 11412 15116 k3
D9 R1 x2’ A2 (RX]

WRITE HALFWORD
WH

R1, R2

{R2 (017)] ——=DEVICE

R2 (8:15)] ——DEVICE

8-81T ORIENTED DEVICE CONTROLLER

R2 (0115)) —=DEVICE 16-81T ORIENTED DEVICE CONTROLLER
0 718 11112 18 : .
98 R1 R2 (RR]
wH R1, A2 (X2 A2+ c— A4
pR2fe }Ag 4 &‘i}l. 1]—e SEV:S§ 8-81T ORIENTED DEVICE CONTROLLER
[A2 + (X2)] ——=DEVICE 14.3|T ORIENTED DEVICE CONTROLLER
Q 718 11132 15116 1
os A1 x2 A2 (RX]

Figure VI-25.

Halfword I/0 Instructions

VI-47

TM(NORAD)-637/027/02 Mo
13 Jan 87 '

~—

READ BLOCK /
RBR R1, R2
1. N = [A+(X2))

2. IFN D> [A+(X2)+2)
THEN TERMINATE WITH A CONDITION CODE = 0000
ELSE:

3. DEVICE =—(N)
4, No—=N+1
S. RETURN TO STEP 2 . v

0 7,8 1112 15
07 R1 A2 [RR]
ns A1, A2(X2)
1. N = (R2) <)

2, IFN > (R2+1),
THEN: TERMINATE WITH A CONDITION CODE = 0000
ELSE: ¢

3. DEVICE~-—(N) .
« 4, N = N+ .
3. RETURN TO STEP 2
0 718 11112 15116 31

o7 R1 X2 A2 (RX]

WRITE BLOCK ’
WBR R1, R2
1. N = [A+(X2))

2. IFN D> (A +(X2)+2],
?:;Nl TERMINATE WITH A CONDITION CODE = 0000
E: .

3. (N) ==— DATA BYTE
4, NN+ 1]
S. RETURN TO STEP 2
] 78 11412 15

96 R1 R2 (RR]

w8 R1, A2(X2)

1. N==—(R2)

2. IFN> (R2+1),
THEN: TERMINATE W1TH A CONDITION CODE = 0000
ELSE:

3. (N) =— DATA 8YTE
“A N=—N+1
5. RETURN TO STEP 2
0 7,8 11012 15116 n

o6 R1 x2 ' A2 (RX]

Figure VI-26. Block I/0 Instructions

VI-48

| ¥
sn
. k)

TM(NORAD)-637/027/02 i
3 Jan 87

et

| 1] 0] 0] 0| Device busy (BSY)

I 0 I 1 | 0 I 0 | Examine status (EX) or time-out
| 0] 0] 1] 0| Endof medium (EOM)

| 0 I 0 | 0 | 1 | Device unavailable (DU)

(2) Sense Status. The Sense Status (SS and SSR) instructions
shall provide a means for determining the status of an external I/0 device.
The 16-bit general recister specified by the first operand (Rl) shall
contain the device address. The device shall be addressed, and the 8-bit
device status byte shall replace the content of the location specified by
the second operand. The Condition Code shall be set equal to the
right-most four bits of the device status byte. The first operand shall
remain unchanged. These instructions shall be privileged. The resulting

Condition Code when the addressed device is a standard Interdafta controller
shall be: ,

A

| 1 | | | | Device busy (BSY)

I | 1| | | Examine status (EX) or time-out
l l | 1 I I End of medium (EOM)

| | | | 1 | Device unavailable (DU)
11 1 |

(3) Output Command. The Output Command (OC and OCR) instructions
shall provide a means for commanding external I/0 devices. The 16-bit
general register specified by the first operand (Rl) shall contain the
device address. The device shall be addressed, and the 8-bit device
command byte specified by the second operand shall be transmitted to the
addressed device. Both operands shall remain unchanged. The overflow bit
shall be set if the device can not complete the command action. These
instructions shall be privileged.

(4) Read Data. The Read Data (RD and RDR) instructions shall
address an external I/0 device and input a byte of data. The 16-bit
general register specified by the first operand (Rl) shall contain the
device address. The device shall be addressed, and a single 8-bit byte
shall be transmitted from the device replacing the content of the location
specified by the second operand. These instructions shall be privileged.
These instructions should not be used with 16-bit oriented device

controllers. For l6-bit oriented devices, use Read Halfword/Write Halfword
instructions.

VIi-49

TM(NORAD)-637/027/02 N

Ve,

13 Jan 87 T

NS
|

(5) Write Data. The Write Data (WD and WDR) instructions shall
address an external I/0 device and output a byte of data. The 16-bit
general register specified by the first operand (R1) shall contain the
device address. The device shall be addressed, and a single 8-bit byte
shall be transmitted to the device. Both operands shall remain unchanged.
These instructions shall be privileged. These instructions should not be

used with 16-bit oriented device controllers. For 16-bit oriented devices,
use Read Halfword/Write Halfword instructions.

(6) Autoload. The Autoload (AL) instruction shall load memory
with a block of data from a byte oriented input device (e.g., teletype,
photoelectric paper tape reader, magnetic tape, etc.). The data shall be
read a byte at a time and stored in successive memory locations starting
with location X'80'. The last byte shall be loaded into the memory
location specified by the address of the second operand [A2+(X2)]. Any
blank or zero bytes that are input prior to the first nonzero byte shall be
considered to be leader and, therefore, ignored. All other zero bytes
shall be stored as data. The input device shall be specified by memory
location X'78'. The device command code shall be specified by memory
location X'79'. This instruction shall be privileged. The Rl field of an
Autoload machine instruction contains zero. This instructions should not
be used with 16-bit oriented device controllers. For 16-bit oriented
devices, use Read Halfword/Write Halfword instructions. The resulting

Condition Code when the addressed device is a standard Interdata controller
shall be:

ICIVIGILI

| |

| 0] 0| 0] 0| Data transfer completed correctly
| 1 | | | I Device busy (BSY)

I | 1| | | Examine status (EX) or time-out

| l | 1] | End of medium (EOM)

I J ' ‘ 1 ‘ Device unavailable (DU)

(7) Read Halfword. The Read Halfword (RH and RHR) instructions
shall address an external I/O device and input a halfword of data. The
16-bit general register specified by Rl shall contain the device address.
The device shall be addressed, and a 16-bit halfword shall be received from
the device replacing the contents of the second operand. The Read Halfword
instruction shall be implemented such that it can work with both 8-bit byte
oriented device controllers and with 16-bit halfword oriented device
controllers. If the controller is byte oriented, the processor shall input
two eight bit bytes. If the controller is halfword oriented, the processor
shall input one 16-bit halfword. These instructions shall be privileged.

With the RX form (RH), the effective address [A2+(X2)] shall be an even
value.

VI-50

| e
: \

S
s T

TM(NORAD)-637/027/02
13 Jan 87

(8) Write Halfword. The Write Halfword (WH and WHR) instructions
shall address an external I/0 device and output a halfword of data. The
16-bit general register specified by Rl shall contain the device address.
The device shall be addressed, and a 16-bit halfword shall be transmitted
to the device from the location specified by the second operand. The Write
Halfword instruction shall be implemented such that it can work with both
8-bit byte oriented device controllers and with 16-bit halfword oriented
device controllers. If the controller is byte oriented, the processor
shall output two eight bit bytes. If the controller is halfword oriented,
the processor shall output one 16-bit halfword. The Read Halfword and
Write Halfword instructions are useful with devices requiring two bytes per
transfer. Since the transfer is accomplished with one instruction instead
of two, both time and memory are saved. Some examples of devices with
which these instructions can be used are Halfword I/0 Module, 16-line
Interrupt Module, conversion equipment (i.e., D/A and A/D Converters), Card
Reader, and Control Panel. With the RX form (WH), the effective address
[A2+(X2)] shall be an even value. These instructions shall be privileged.

(9) Read Block. The Read Block (RB and RBR) instructions shall
address an external I/0 device and input a series of data bytes. The
16-bit general register specified by the first operand (R1) shall contain s
the device address. The 16-bit second operand location [R2 or A2+(X2)]
shall contain the starting address of the data buffer to be transferred.
The next sequential halfword [(R2+l) or A2+(X2)+2)] shall contain the
ending address of the data buffer. The starting address shall be equal to,
or less than, the ending address. Data transfer shall be inclusive of the
buf fer 1imits. If the starting address is greater than the ending address,
no transfer shall take place, and the instruction shall terminate with the
Condition Code equal to zero. The Read Block instruction shall cause the
transfer of eight bit data bytes from a device to consecutive memory
locations. No other instructions shall be executed during transfer of the
data block. The Condition Code portion of the PSW (12:15) shall be set to
zero after a normal transfer. In the event of an abnormal block data
transfer, the Condition Code shall not be zero. These instructions shall
be privileged. These instructions should not be used with 16-bit oriented
device controllers. For 16-bit oriented devices, use Read Halfword/Write
Halfword instructions. For RBR, General Register 14 shall be the maximum
specification for the R2 field. The resulting Condition Code when the
addressed device is a standard Interdata controller shall be:

MM

| 0 | 0 | 0 | 0 | Block data transfer completed correctly
| 1| [| | Device busy (BSY)

| &9 | | Examine status (EX) or time-out

| | | 1] | Endof medium (EOM)

I | I | 1 I Device unavailable (DU)

VI-51

|
TM(NORAD)-637/027/02 ' .

13 Jan 87

(10) Write Block. The Write Block (WB and WBR) instructions shall
address an external I/0 device and output a series of data bytes. The
16-bit general register specified by the first operand (Rl) shall contain
the device address. The 16-bit second operand location [R2 or A2+(X2)]
shall contain the starting address of the data buffer to be transferred.
The next sequential halfword [(R2+l) or A2+(X2)+2)] shall contain the
ending address of the data buffer. The starting address shall be equal to,
or less than, the ending address. Data transfer shall be inclusive of the
buffer limits. If the starting address is greater than the ending address,
no transfer shall take place, and the instruction shall terminate with the
Condition Code equal to zero. The Write Block instruction shall cause the
transfer of eight bit data bytes from consecutive memory locations to a
device. No other instructions shall be executed during transfer of the
data block. The Condition Code portion of the PSW (12:15) shall be set to
zero after a normal transfer. 1In the event of an abnormal block data
transfer, the Condition Code shall not be zero. These instructions shall
be privileged. These instructions should not be used with 16-bit oriented
device controllers. For 16-bit oriented devices, use Read Halfword/Write
Halfword instructions. For WBR, General Register 14 shall be the maximum
specification for the R2 field. The resulting Condition Code when the
addressed device is a standard Interdata controller shall be:

el

| o] o |o]o | Block data transfer completed correctly
| 1] | | | Device busy (BSY) .

| 11] | | Examine status (EX) or time-out

| | | 1] | Endof medium (EOM)

’ } 1 Device unavailable (DU)

k. List Processing Instructions. The item shall execute the List
Processing instruction to manipulate a circular list as defined in Figure
VI-27. The first two halfwords shall contain the list parameters. The
list shall immediately follow the parameter block. The first halfword in
the list shall be designated slot zero. The remaining slots shall be
designated 1, 2, 3, etc., up to a maximum slot number which is equal to the
number in the list minus one. An absolute maximum of 255 halfword slots
shall be specifiable. The first paramater byte shall indicate the number
of slots (halfwords) in the entire list. The second parameter byte shall
indicate the current number of slots beirg used. When this byte equals

zero, the list shall be empty; and when this byte equals the number of
slots in the list, the 1list shall be full. Once initialized, this byte

shall be maintained automatically. It shall be incremented when elements
are added to the list and decremented when elements are removed. The third
and fourth bytes of the list parameters shall specify the current top of
the list and the next bottom of the list, respectively, as shown in Figure
VI-28. These pointers shall also be updated automatically.

VI-52

TM(NORAD)-637/027/02 v
13 Jan 87
Q 78 18
RUMSER OF 2LOTS NUSMBER OF SLOTS
IN THE LIST \SEDR
CURRENT TOP * NEXT BOTTOM

SLOT O
sLoT 1 '
SLOTn

Figure VI-27. List Processing Instruction Format

. URRENT TOP 3107 o
CURRENT TOP . SLOT 0

|
————a | SLOT 1
SLOT 2

OCCUMED
SECTION SLOT 3
' SLOT 4

SLOT &
SLOT 7

NEXT BOTTOM ——o

Figure VI-28. Circular List Instruction Processing

VI-53

1w arar

; X
TM(NORAD)-637/027/02 oo
13 Jan 87

These instructions shall use the RX format. The exact format, op-code,
assembler notation, and diagrammatic representation of each instruction
shall be as shown in Figure VI-29. The operation and resulting Condition
Code shall be as follows:

ADO TO TOPMQTTOM OF LIST
ATL R1, A2 (X2)

7 ; 12 15116 0
(v a1 x2 A2 (RX)

ABL R1, A2 (X2)

7|s uh2 13l1¢ : 31
s a1 x2 A2 (RX]

REMOVE FAOM TOP/MBOTTOM OF LIST
RTL R1, A2 (X2)

10 71s 1102 15116 31

s¢ A1 x2° A2 (RX)

RBL R1, A2 (X2)
[\] 718 11 15(1¢ 31
¢7 n1 x2 A2 (RX]

Figure VI-29. List Processing Instructions

VI-54

15 Apr 87

(1) Add to Top/Bottom of List. The Add to Top of List (ATL) and
Add to Bottom of List (ABL) instructions shall manipulate the list pointers
and insert halfwords to the addressed 1list. The general register specified
by Rl shall contain the element to be added to the list. The second
operand [A2+(X2)] shall specify the address of the list. The number of
slots used tally shall be compared to the number of slots in the list as
specified by the first byte of the list. If the number of slots used tally
is equal to the number of slots in the list, an overflow condition shall
occur, and the element shall not be added to the list. Instead, the B
instruction shall be terminated with the V flag set in the PSW. If the
number of slots used tally is less than the number of slots in the list, it
shall be incremented by one; the appropriate pointer shall be changed; the
element shall be added to the list; and the instruction shall be terminated
with a Condition Code of zero. The ATL instruction shall manipulate the
Current Top Pointer in the list. If no overflow occurred, the Current Top
Pointer (which points to the last element added to the top of the list)
shall be decremented by one, and the element inserted in the slot pointed
to by the new Current Top Pointer. If the Current Top Pointer was zero on
entering this instruction, the Current Top Pointer shall be set to the
maximum slot number in the list. This condition shall be referred to as
list wrap. The ABL instruction shall manipulate the Next Bottom Pointer.
If no overflow occurred, the element shall be inserted in the slot pointed
to by the Next Bottom Pointer, and the Next Bottom Pointer incremented by
one. If the incremented Next Bottom Pointer is greater than the maximum
slot number in the list, the Next Bottom Pointer shall be set to zero.
This condition shall also be referred to as list wrap. The resulting
Condition Code shall be:

C|V]|G|L
| o] 1]0] 0| ©List overflow
I OlofoO 0 Element added successfully

(2) Remove From Top/Bottom of List. The Remove From Top of List
(RTL) and Remove From Bottom of List (RBL) instructions shall manipulate
the list pointers and remove halfwords from the addressed list. The
element removed from the list shall be placed in the general register
specified by Rl. The second operand [A2+(X2)] shall specify the address of
the list. 1If, on entering the instruction, the number of slots used tally
is zero, the list is already empty and the instruction shall be terminated
with the V flag set in the PSW. This condition shall be referred to as
list underflow. 1If underflow does not occur, the number of slots used
tally is decremented by one; the appropriate pointer shall be changed; and
the element shall be extracted and placed in Rl. The instruction shall be
terminated with a Condition Code equal to zero if the list is now empty or
with the G flag set if the list is not yet empty.

VI-55

L XLLVO
sn
‘ ¥

TM(NORAD)-637/027/02A -

1
{
i

TM(NORAD)-637/027/02A
15 Apr 87

The RTL instruction shall manipulate the Current Top Pointer in the list.
If no underflow occurred, the Current Top Pointer shall point to the
element to be extracted. The element shall be extracted and placed in RI.
The Current Top Pointer shall be incremented by one, and compared to the
maximum slot number. If the Current Top Pointer is greater than the
maximum slot number in the list, the Current Top Pointer shall be set to
zero. This condition shall be referred to as list wrap. The RBL
instruction shall manipulate the Next Bottom Pointer. If no overflow
occurred, and the Next Bottom Pointer is zero, it shall be set fo the
maximum slot number in the list (list wrap). Otherwise, it shall be ~ -
decremented by one, and the element now pointed to shall be extracted and
placed in Rl. The resulting Condition Code shall be:

le|lw]e]tL

|

| o] 1]0] 0| List was already empty
| o| o | 0] o| List is now empty

I 0 | 0 | 1]o0 | List is not yet empty

1. Trigonometric Operation Word Formats. The trigonometric operation
option instruction repertoire employs two different instruction word
formats (register to register, RR; and register to indexed, RX) to perform
the trigonometric function. The trigonometric operation option instruction
repertoire consists of four instructions.

(1) Trigonometric Operation Data Word Formats. The trigonometric

operation data word formats consist of fixed scalars, scalars, and angles
(Figure VI-30).

‘(2) Trigonometric Data. The trigonometric instructions either
operate on angles to produce fixed scalars or operate on scalars to produce
angles, depending on the type of function (Table VI-1l). Trigonometric data
is handled with the following conventions:

(a) Fixed scalars are used to represent the sine or cosine of
an angle and are defined as fixed-point numbers in the range of -1.0 to
+1.0 inclusive. The raddix point is between bits one and two.

(b) Scalars may be arbitrary fixed-point quantities with the
radix point anywhere within or outside the data word. The two scalar
operands input to the trigonometric operation are in the same scale (their
radix points must be in the same relative position).

VI-55.1

FIXED SCALARS

PCALANS

ANGLES

Figure VI-30.

TM(NORAD)-637/027/02A
15 Apr 87

0112 // n

3 -10< X 1.0
//

RADIX POINT

01 // 31

; 3 St
//

o112 // N
gs 0< ¢ <2e0°
rd

(OR CONSIDERED AS A TWOS
COMPLEMENT NUMBELA:
-120° €0 < 180°)

Trigonometric Data Formats

TM(NORAD)-637/027/02A A X
15 Apr 87 N

$0° « X ‘4000 0000"
= 010...0

45° « X ‘2000 0000

= 001...0
1807 = X “3000 0000’ 0® = X '0000 0000
=100... 0 = 000..,0

316%«1110...0~ -0010,., 0 » -48°
= X *EDOQ 0OOC" = X "2000 0000 = 45°

270%= X *‘C000 0000"
=110...0

Figure VI-31. Binary Angular Measurement System (BAMS)

VI—SS -3

|
‘ o

TM(NORAD)-637/027/02A }.__

15 ApE 8F =
Table VI-1. Trigonometric Operands
I
FUNCTION INPUT . OUPTUT
Cosine, Sine Angle (BAMS) Fixed Scalar e
ARC-Sine Scalar Angle (BAMS)
ARC-Tangent, /x2 + y2 .| Scalar Angle (BAMS) and Scalar

/x2 - y2 Scalar Scalar

VI-55.4

TM(NORAD)-637/027/02A
15 Apr 87

(c) Angles are represented in the binary angular measurement
system (BAMS, Figure VI-31). Bit O represents an angle of 180 degrees (pi
radians), bit 1 represents 90 degrees (pi/2 radians), bit 2 represents 45
degrees (pi/4 radians).

NOTE: Angles in this representation behave like twos complement numbers:
Example:
45 degrees = X'20000000' and -45 degrees = 315 degrees

X'E0000000' = twos complement of X'20000000'

(3) Trigonometric Operation Instruction Word Format. The computer
executes the trigonometric operations (Table VI-2). Figure VI-32 shows the
format, op-code, assembler notation, and diagrammatic representation of
each trigonometric instruction.

(4) CORDIC Implemented Instruction. Since the execution time of
the trigonometric operation instructions vary significantly with the
accuracy desired, the computer executes the CORDIC algorithm (under program
control) to reduce instruction execution times. The precision of the
results (of a trigonometric operation) is controlled by the value of the
CORDIC precision register (CPR) contents, when a CORDIC implemented
instruction is executed. The value of the CPR controls the precision of
the results by determining the number of iterations of the CORDIC algorithm
(permissable CPR values are 16, 20, 24, or 28). Table VI-3 shows the
relationship between the number of iterations and number of accurate bits
in the results for each CORDIC implemented instruction.

(5) Exchange CORDIC Precision Register Instruction. The exchange
CORDIC precision register (ECPR) instruction provides control for reading
and writing the CORDIC precision register (CPR). The contents of the CPR
are saved, and R2 1is used to load CPR with a new value. The previous value
of CPR is placed in Rl. Only the following values are permitted for
asgignment to CPR: 16, 20, 24, and 28. This is automatically guaranteed
in the ECPR instruction by the computer masking bits O thru 10, 14, and 15
to zero, and forcing bit 11 to one, of the word used to specify the number
of iterations. If Rl equals R2, the result of this instruction exchanges
the contents of Rl with the contents of CPR. The resulting Conditional
Code 1is not changed.

(6) Cosine/Sine Instructions. The cosine/sine (COS and COSR)
instructions calculate both the sine and cosine of the second operand. The
second operand represents an angle in BAMS. The cosine of this angle is
calculated in fixed scalar format, and is stored in register pair R1,

Rl + 1. The sine of the angle is calculated in fixed scalar format, and
stored in register pair Rl + 2, Rl + 3, Rl (and R2) is even. Rl is less
than or equal to 12. 1In COSR, R2 may utilize any of the quadruple of
registers denoted by Rl. The resulting Condition Code is not changed.

VI-55.5

R

..... arws.

¥

L
o ORI
v b

TM(NORAD)-637/027/02A ="

15 Apr 87
3
Table VI-2. Trigonometric Operation Instructions
Execution time in
Instruction Mnemonic |Format |microseconds(CPR=28) Comments

Exchange CORDIC ECPR RR 1.4 - -
Precision Register
(CPR)
Cosine, Sine COSR RR 51.0%
CoS RX 51.4%
ARC-Sine ASNR RR 113.6/121.9/134 .4*%* |min/avg/max
ASN RX 114.8/123.1/135.6* |min/avg/max

ARC-Tangent, /x2 + y2 | ATN RX 62.8/69.3/73.8% min/avg/max
/x2 - y2 SQDR RR 62.8/65.4/77.2% min/avg/max
SQD RX 64.0/66.6/78.4% min/avg/min

NOTES: * By reducing CPR to 24, 20, or 16, these execution times can be
decreased. For each reduction of four bits in accuracy, the
execution time decreases by 6.4 microseconds.

* By reducing CPR to 24, 20, or 16, these execution times can be
decreased. For each reduction of four bits in accuracy, the
execution time decreases by 12.8 microseconds.

VI-55¢6

TM(NORAD)-637/027/02A

IRR)

15 Apr 87
ECPR Ry, R2 TEMP o— (CPR)
(CPR]e— X'DO10° OR (X'001C° AND (ARQ)
(A1) o— TEMP
o 7,8 11,12 18
80 n na
COSA R\, R2 (R1, R1 + 1)@= COS (A2, R2+ 1)
(R162,R1 ¢ 3)e— SIN(R2L R2+ 1)
Q 7,8 11,12 18
(1] n n2

COS R, A2 IX2),

(An]

EXCHANGE CORDICPRECISION
REGISTEA INSTRUCTION

COSINE/SINE INSTRUCTIONS

(R, A1 ¢ 1) o—— COSI[A ¢ (X2)], [A ¢ (X2)*2])
(M1 ¢ 2 RY e 3)e— SINIIA ¢+ (X2)], [A+(X2]¢2])

0 7,8 1,12 18,16 LY
Fi nt x2 A2 IRx)
ARC SINE INSTAUCTIONS
ASNAR R, A2 (R, R1 ¢ 1)e— ARCSIN (Y/2) Z= (A2 A2+ 1)
Ye(R2+2 R2+)
0 78 1112 13
xX'g4’ 3] n2 (RA)
M A1, A2 (X2 (R1, R1e 1) e— ARCSIN(Y/Z)Z= 1A ¢1X2), Z+1X2) 2]
AS (x2) Yo [Ae[X2]e4 Ae(X2) 8]
0 7,0 11112 15]16 31
X ‘Fa’ A x2 A2 Irx|
ARC TAN INSTRUCTIONS
A
ATNR A1, A2 (R1, A1 e 1he— ARCTAN (Y/X) X-(R2 A2 ¢ 1)
(R1e2, RYeINe— /x2,vy2 Y-(R2, +2 R2+13)
) 710 11 (12 18
82 Y] n2
ATN, R, R2 (RY, R1 ¢ 1) e— ARCTAN (Y/X) X=[As(X2], A (x2) 2]
’ (12 A1+ x2 ¢ v2 Yo [Ae(X2) o4 A (X2 8]
(] 70 1112 18 {18 3
l £ X x2 A2 l
SQUARE ROOT OF DIFFERENCE INSTRUCTION
X =(R2 R2+ 1)
SQDA, A1, A2 (A RT e 1) e— (/x?_y2 {v-uuvz. A2+ 2)
g = 78 11112 18
I (&) L] R2]
Xo[Ao(X2], As(X2) 2]
8Q0 A1, A2 (X2) CINLIRRIE VA SRR Velawirars g avixnas 4l
0 78 1112 1816 ”n
[[F] At x3 A2]

Figure VI-32.

Trigonometric Operation Instructions

TM(NORAD)-637/027/02A

15 Apr 87
Table VI-3. Accuracy of CORDIC Routine
Error of Results (hexadecimal)
with CPR Value equal to

Instruction Function 16 20 24 28
COSR, COS a €-- cos (9) 00008000 00000800 00000080 00000016
b €-- sin (8) 00008000 00000800 00000080 00000016
ATNR, ATN |6 €-- arctan(y/x)| 00005000 00000500 00000050 00000013
z € | x2 + y2 00008000 00000800 00000080 00000016
SQDR ,SQD | z €-- / x2 - y2 | 00008000 | 00000800 | 00000080 | 00000017
ASNR, ASN |8 €-- arcsin(y/z)| 0000D000 00000D00 000000D0 0000002A

08 is "angle" in hAMS; -1.0 < 1.0

a, b are "fixed scalars":

la|l < 1.0

X, y, z, are "arbitrary scalars”

The meaning of the accuracy figures is as follows:

IReSUItcomputed - Resultexact| < Error

$ie

TM(NORAD)-637/027/02A
15 Apr 87

(7) Arc Sine Instructions. The arc sine (ASN and ASNR)
instructions calculate the arc sine of the ratio of two quantities. The
second operand denotes a pair of 32-bit, twos complement, arbitrary scale
quantities; say “"z" and "y". The arc sin of y/z is calculated in BAMS and
placed in register pair Rl1, RlL + 1. Rl (and R2) is even. In ASNR, R2 is
less than or equal to 12; Rl may utilize any of the quadruple of registers
denoted by R2. The arc sine is in the range - /2 < arc sine y/z { /2.

The sign of z is ignored (that is, if z < O then z is replaced by -z). nlf
z<yor if z =y = 0, then (Rl, Rl + 1) is not changed, and the V flab is
set. This is considered an overflow. L

Resulting Condition Code: CVGL
0 normal case

1 |z| < |y| or (z =y =0)

(8) Arc Tan, / x2 + y2 Instructions. The arc tan (ATN and ATNR)
instructions calculate the arc tan of the ratio of two quantities, and also
lthe square root of the sum of the squares of the quantities. The second
operand denotes a pair of 32-bit, twos complement, arbitrary scale
quantities; say "x" .and "y". The arc tangent of the ratio y/x 1is
calculated in the BAMS, and placed in register pair Rl, Rl + 1. The square
root of the sum of the squares is calculated and placed in register pair
RL + 2, R1 + 3. The scale of x and y are the same, and the square root
result is in the same scale. Rl (and R2) 1s even and is less than or equal
to 12. In ATNR, Rl and R2 may be the same, or may denote overlapping

quadruples of registers.

If both x and y are zero, then the answer for both the arc tangent and the
square root of the sum of the squares will be zero. If the arguments x and
y are such that the square root of the sum of the squares is breater than
X'7FFFFFFF', then no registers are changed and the V flag is set. This
constitutes an overflow. (Note that inherent errors in the calculation can
cause a result that would be slightly less than X'7FFFFFFF' ti come out
greater than X'FFFFFFF' and cause the overflow condition.)

Resulting Condition Code: CVGL

0 normal case

1 / x2 + y2 < X'7FFFFFFF'

VI-55.9

|

N
s

b e LD

TM(NORAD)-637/027/02A **

15 Apr 87
Table VI-4. Instruction Augment Set
Execution Time
Mnemonic Op-Code (HBX) in microseconds
Data

Instruction | (Bits) |pr/sF | R | RX |RR/SF | RI | RX |RR/SR | RI | RX
Set 8 SESB E4 1.6
Status Bits
Reset 8 RESB E3 1.4
Status Bits
Load 16 LCHR LCH 12 53 1.0 2.0
Complement
Halfword
Load and 16 LCNHR LCNH 10 51 1.2 24
Change
Number
Base
Halfword
Lo~d 16 LAVR LAV 11 52 1.2 2.4
Absolute
Value
Halfword

VI-55.10

e

TM(NORAD)-637/027/02A

15 Apr 87

10D

'L 1140

-
SET STATUS BITS
nEes '2 (PSWH(O:71] *— [PSWI0:7)] OA [1200:7))
0 1]e 11]12 1818 3
€4 0 [} 12 (LR}
REBET STATUS BITS PR
RESS 12 (PEW(0:7)] ~=—— (PSW(0:7)] AND [1210:7)] - .
[} 1|8 1112 18|16 31
L ° o 12 (m1)
LOAD COMPLEMENT HALFWORD
LCHR ALLA2 (A1) *—————————— (R2)
[7]ls 11]12 18
12 L} [°] (rR)
LCH R1,A2 (X2) (A1) o =[A2 ¢ (X2}]
) 7]s 1112 18]18 31
(4] L1 X2 A2 (Ax] : 4
:
LOAD ANDCHANGE NUMBER BASE 2
HALFWORD (R}t (R2) : (R2) >0
LCNHR A1.R2 (R1) @ =1 {R2): (R2) < O
0 7]e 1112 18
10 Rr1 r2 (L LY
’
LCNH n1.A2(X2) (R]) S [A2 ¢ (X2)] : [A2 ¢ (X2] > O 5
R1) e 2 1[A2 ¢ (X2)] : [A2 ¢ X2)] <O
0 7] 1112 18] 18 n
[1] n X2 A2 (mx)
LOAD ARSOLUTE VALUE HALFWORD ;)
LAVR (RY) *———— (R3) : (R2) > O
({31 Pru——1 RN - |
0 7]s 1112 18
1" Rt ~ (mn)
LAY RIAZ XD (R1) - [A2+ (x21] : [A2+ (x2)] >0
(A1) e <[A2 ¢ (X2)] : [A2 ¢ (X2)) <O
(-] 31
2 n1 x2 A2 Inx]

Figure VI-33.

Instruction Augment Set

¥i=55.11

TM(NORAD)-637/027/02A
15 Apr 87

(9) / x2 - y2 Instructions. The square root of the difference
(SQDR and SQD) instructions calculate the square root of the difference of
the squares of the two quantities. The second operand denotes a pair of
32-bit, twos complement, arbitrary scale quantities; say "x" and "y". The
square root of the difference of the squares is calculated and placed in
register pair R1 + 1, Rl + 2. The scale of x and y are the same, and the
square root result is in the same scale. Rl is even and is less than or
equal to l4. 1In SQDR, R2 is less than or equal to 12. Rl may utilize any
of the quadruples of registers denoted by R2. While there is some
inaccuracy in the general operation, if x = y then an exact zero will be
the result. If x < y then (Rl, Rl + 1) is not changed, and the V flag is
set. This constitutes an overflow.

Resulting Condition Code CVGL

0 normal case

L x| < |yl

m. Instruction Augment Set. The instruction autment set consists of
five instructions added to the basic computer instruction repertoir
(Table VI-4). These instructions provide the computer with the capability
to alter Program Status Bits; perform twos complement arithmetic
operations; convert data from a sign and magnitude number representation to
a twos complement number representation and vice versa; and perform an
absolute magnitude operation on twos complement data. These instructions
use the Register to Register (RR), the Short Format (SF), the Register to
Indexed Storage (RX), and the Register Immediate (RI) formats. The exact
format, op-code, assembler notation, and diagrammatioc representation of
each instruction are shown in Figure VI-33. The operation and resulting
Condition Code are as follows:

(1) Set Status Bits. The set status bits (SESB) instruction
causes PSW bits (0:7) to be set according to the corresponding bits (0:7)
set in the I2 field of the instruction. Rl and X2 are zero. I2 field bits

(0:7), which are reset, and 12 bits (8:15) do not change the corresponding
PSW bits. The Condition Code remains unchanged. This instruction is
privileged.

(2) Reset Status Bits. The reset status bits (RESB) instruction
causes PSW bits (0:7) to be reset according to the corresponding bits (0:7)
set in the I2 field of the instruction. I2 field bits (0:7), which are
reset, and I2 bits (8:15) do not change the corresponding PSW bits. The
Condition Code remains unchanged. This instruction is privileged.

VI-55.12

()

i

TM(NORAD)-637/027/02A
15 Apr 87

(3) Load Complement Halfword. The load complement halfword (LCHR
and LCH) instructions cause the twos complement of the second operand to be
loaded into the general register specified by Rl. The second operand is
unchanged. 1In the RX format, the second operand is located on a halfword
boundary. If the operand is 80003¢, the result is 800015. The resulting
Condition Code shall be:

cC|VvV]|G|L - - -
| o] o] o] 0| Result is zero

1 0] 0 1 Result is less than zero (operand is not 80001¢)

1 0 1 0 ‘ Result is greater than zero

1 1 0 1 Arithmetic overflow (operand is 8000;¢)

(4) Load and Change Number Base Halfword. The load and change
number halfword (LCNHR and LCNH) instructions change the number
representation of the second operand from twos complement to sign and
magnitude, or from sign and magnitude to twos complement. This is
accomplished as follows. If the second operand is positive (bit zero
equals zero), the unmodified second operand is loaded into the general
register specified by Rl. Number base conversion is equivalent to
subtracting 8000014 and performing a twos complement on the result. The
number 800014 is changed to 0000j¢. (Note that this is correct for sign and
magnitude conversion.) The second operand is unchanged. In the RX format,
the second operand is located on a halfword boundary. The resulting
Condition Code shall be:

| o]l o] 0| 0| Result is zero (operand is zero)
010]0 1 Result is less than zero (operand is less than
zero, but not 8000;¢)
0] o0 1 0 Result is greater than zero
|1]o]o]o Result is zero (operand is 8000;¢)

VI-55.13

A

JLLH0
sn

»

',. B

41900
JLLV0
sn
X

. .-

TM(NORAD)-637/027/024 =™+
15 Apr 87
Table VI-5. Unimplemented 48-Bit Floating-Point Instructions
Mnemonic [Op~Code| Title
LF 78 48-bit floating-point load ' =
LFR 38 48-bit floating-point load, register to register
STF 70 48-bit floating-point store
AF 7A 48-bit floating-point add
AFR 3A 48-bit floating-point add, register to register
SF 7B 48-bit floating-point subtract ;
SFR 3B 48-bit floating-point subtract, register to register X
CF 79 48-bit floating-point compare g
CFR 39 4é-bit floating-point compare, register to register :
MF 7C 48-bit floating-point multiply g
MFR 3C 48-bit floating-point multiply, register to register g
DF 7D 48-bit floating-point divide §
3

DFR 3D 48-bit floating-point divide, register to register z

TIRE Y TSIty ey

(5) Load Absolute Value Halfword. The load absolute value
halfword (LAVR and LAV) instructions cause the absolute magnitude (positive
value) of the second operand to be loaded into the general register
specified by Rl. The second operand is unchanged. 1If the second operand
i1s negative, a twos complement is performed prior to loading the second
operand into the Rl general register. 1If the operand is 800016, the result
is 800016. 1In the RX format, the second operand is located on a halfword
boundary. The resulting Condition Code shall be:

VI-55.14

TM(NORAD;—637/027/02A \ N
15 Apr 8 y

| o] o] o | 0] Result is zero
0 0 1 0 Result is greater than zero (operand s greater
than zero) - .
1 011 0 Result is greater than zero (oprerand is less
zero, but not 8000;¢)
1|]1]0]1 Arithmetic overflow (operand is 8000;¢)

Table VI-S5 contains the 48-bit floating-point instructions that are not
implemented in JSS HMP-1116 controller computers. These instructions are
treated as no-ops if executed.

VI-2. CENTRAL COMPUTER INSTRUCTIONS. The Central Computer (CC) will be
capable of executing instructions as specified in the following instruction
repertoire, which shall consist of 64 instructions. Use of all 64
instructions shall be possible, however, the use of the eleven serial 1/0
instructions out of the set may not be applicable for the application
described herein.

a. Control Operations:

OP CODE R Y

0 4 5 89 17

(1) TRU - Transfer Unconditionally (OP CODE 00). The computer
will take the next instruction from the location in memory specified by Y
and R.

(2) TRN - Transfer on Accumulator Negative (OP CODE Ol). The sign
bit of the accumulator is sensed. If it is negative (1), control is
transferred to the memory location specified by Y and R. If the
accumulator sign is positive (0), the computer will take the next
instruction in sequence.

(3) TRZ - Transfer on Accumulator Zero (OP CODE 02). The contents
of the accumulator are tested for a zero value. The sign bit is not
tested. If the contents of the accumulator are zero, control {is
transferred to the memory location specified by Y and R. If the contents

of the accumulator are not zero, the computer will take the next sequential
ingtruction.

VIi-56

